
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2015

Detection of new intentions from users for software
service evolution in human-centric context-aware
environments using Conditional Random Fields
Haihua Xie
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Xie, Haihua, "Detection of new intentions from users for software service evolution in human-centric context-aware environments
using Conditional Random Fields" (2015). Graduate Theses and Dissertations. 14710.
https://lib.dr.iastate.edu/etd/14710

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14710&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14710&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F14710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/14710?utm_source=lib.dr.iastate.edu%2Fetd%2F14710&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Detection of new intentions from users for software service evolution in human-centric
context-aware environments using Conditional Random Fields

by

Haihua Xie

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:
Carl K. Chang, Major Professor

Morris Chang
David Weiss
Samik Basu

Simanta Mitra

Iowa State University

Ames, Iowa

2015

Copyright Haihua Xie, 2015. All rights reserved.

www.manaraa.com

ii

TABLE OF CONTENTS

 Page

ACKNOWLEDGMENTS .. iv

ABSTRACT………………………………. ... v

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 BACKGROUND AND RELATED WORK .. 5

 2.1 Software Evolution and Requirement Elicitation ... 5
 2.2 The Situ Framework ... 6
 2.3 Conditional Random Fields .. 8

CHAPTER 3 HUMAN-CENTRIC CONTEXT-AWARE DOMAIN 11

 3.1 Sorts of Entities in SiSL .. 11
 3.2 Definition of Action, Desire, Object and Context .. 15
 3.3 Definition and Attributes of Situation ... 21
 3.4 Definition and Attributes of Situation-Sequence and Intention 28
 3.5 Situation Pattern and Intention Pattern ... 31
 3.6 Basic Axioms in SiSL ... 34

CHAPTER 4 DESIRE INFERENCE AND NEW INTENTION DETECTION FOR
SYSTEM EVOLUTION USING CRF ... 41

 4.1 Knowledge Base of a Human-centric Context-aware Domain 42
 4.2 Desire Inference and New Intention Detection ... 47
 4.3 Using the CRF Method for Desire Inference and New Intention Detection 50
 4.4 System Evolution Process Based on New Intention Detection 55

CHAPTER 5 EXPERIMENT ON A RESEARCH LIBRARY SYSTEM 58

 5.1 Experiment Platform – the CoRE System .. 59
 5.2 Procedure of an IRB Approved Experiment ... 61
 5.3 Data Collection and Preprocessing ... 63
 5.4 Building the Standard CRF Model ... 65
 5.5 Desire Inference using Hidden Markov Model .. 71
 5.6 Inference Result Analysis in the First-Round Experiment 73
 5.7 New Intention Detection Case Study .. 77
 5.8 Validation of System Improvement in the Second-Round Experiment 82
 5.9 Summary of the Experiment ... 85
 5.10 Threats to Validity .. 87

www.manaraa.com

iii

CHAPTER 6 DISCUSSIONS & CONCLUSIONS ... 93

REFERENCES ... 95

www.manaraa.com

iv

ACKNOWLEDGMENTS

I would like to thank my advisor and committee chair, Professor Carl K. Chang, and my

committee members, David Weiss, Morris Chang, Samik Basu, and Simanta Mitra, for their

guidance and support throughout the course of this research.

In addition, I would also like to thank all the colleagues in the Software Engineering Lab

for their advice and help on my work. I want to offer my appreciation to my friends and the

department faculty and staff for making my time at Iowa State University a wonderful

experience. I am indebted to more than 120 participants who contributed to our experiment work.

Without whom, this thesis would not have been possible. I would also like to acknowledge the

assistance and support of the IRB committee at Iowa State University.

Finally, thanks to my family for their encouragement and days of patience, respect, and

love.

www.manaraa.com

v

ABSTRACT

The capability to accurately and efficiently obtain users’ new requirements is critical for

software evolution, so that timely improvements can be made to systems to adapt to the rapidly

changing environment. However, current software evolution cycles are often undesirably long

because the elicitation of new requirements is mostly based on system performance or delayed

user feedback and slow-paced manual analysis of requirements engineers. In this thesis, I

propose a general methodology that employs Conditional Random Fields (CRF) as the

mathematical foundation to provide quantitative exploration of users’ new intentions that often

indicate their new requirements. My methodology is supposed to be applicable in context-aware

software environments, and beneficial for discovering new requirements sooner and considerably

shortening software evolution cycles.

First of all, a situation-centric specification language – SiSL, is proposed to formalize the

concepts and ontology of the application domains of our methodology. In SiSL, the domain of

discourse is divided into five sorts of entities: action, desire, object, situation and situation-

sequence. Another two important concepts, context and intention, are defined based on the five

basic entities. A set of axioms are proposed to explain the relations among action, context values

and desires. Based on the concepts and axioms in SiSL, a domain knowledge base which can

completely describe and specify user’s behaviors and desires in human-centric context-aware

environments can be constructed.

To infer a user’s desire based on a peculiar form of observations and a specific detection

mechanism for user’s new intentions, which may imply new requirements, the Conditional

Random Fields (CRF) method is applied as a mathematical foundation to support my research

www.manaraa.com

vi

work. In this thesis, the main part of a CRF model, a set of feature functions, specify the relations

between observations (actions and context values) and human internal mental states (desires). To

infer user’s desires, the CRF model accepts a sequence of observations as the input and

calculates the score for each possible sequence-labeling, and outputs the sequence-labeling with

the highest score as the inferred desire sequence. By using the CRF method, more accurate desire

inference, the precondition for new intention detection, can be achieved compared with other

statistical methods.

To detect users’ potential new intentions, a CRF model which encodes users’ standard

behavior patterns should be built as the metrics for outlier detection. The training data for

building the standard CRF model are collected from observing user behaviors that are expected

to conform to the system design. In the result of desire inference using the CRF model, the

divergent behaviors will be labeled with desires in low confidence, and they can be singled out

and analyzed for eliciting user’s potentially new intentions. Besides the divergent behaviors,

user’s desire transitions and erroneous behaviors will also be analyzed for detecting new

requirements or system drawbacks. The detected potential user’s new intention will be verified,

analyzed and summarized to generate a formally new intention, which will drive system

evolution through modifications or acquiring new functionalities to satisfy the new requirements.

An experiment on a research library system has been conducted to demonstrate how to apply our

methodology in detection of users’ new intentions and driving system evolution. Finally, this

thesis discusses the threats to validity for our methodology and experiment.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

The goal of software system evolution is to adapt to the ever-changing user requirements

and operating environment [1]. Evolvability is an essential quality requirement for most of

current software systems [2], [3] because of the ever-evolving and sudden emerging nature of

human demands [4] and unpredictable environ-mental changes for modern-day real-world

systems [5]. In order to prolong the productive lifetime of software systems, it is necessary to

explicitly address evolvability during the entire software lifecycle [6]. On the contrary, the

inability to evolve will cause software system to degrade and become less satisfactory, and

eventually obsolete [7]. In practice, the target of cost-effective evolution puts strong demands on

software engineers to change software systems on a constant basis with major modifications or

enhancements in a timely manner [8].

How to make prompt and effective changes to software systems is a big challenge in

software evolution [9]. And all in all, changes shall start with new requirements that specify new

user needs or new system environments. Traditionally, these new requirements are elicited based

on delayed user feedbacks or business needs and by manual analysis [10], which struggles to

keep up with the software evolution pace nowadays. Especially, for many software systems with

enormously large user bases, new individual requirements constantly emerge and accumulate. To

remain competitive in the business, new software development techniques such as “Agile

Methods” are proposed to incrementally develop a working product and deliver it iteratively and

frequently (weeks rather than months) [11]. For example, for the android app “k9mail”, its

developers release a new version of the application in every two weeks. And such phenomena

emerge often in the industry nowadays [60].

www.manaraa.com

2

To achieve fast evolution, new approaches to elicit new user requirements are much

needed. In recent years, most studies on elicitation of new requirements focus on observing

historical defects [12], [13] or analyzing users’ delayed feedbacks [14], [15], while little work

has been done for exploring human intentions that often drive system evolution [16]. Because

service environments nowadays are becoming more and more context aware [17], [18], it is

possible to observe users’ behaviors and environment contexts in real time and analyze users’

mental states for acquiring their demands more quickly [19]. To speed up the analysis process,

using manual approaches alone is not an option in favor anymore. In fact, as technology

advances, applications of mathematical methods in elicitation of new requirements are becoming

feasible and even necessary, so that semiautomatic evolution processes can become a serious

contender.

A frontier work of human-intention-driven service evolution is Situ [19], a framework

that aims to support rapid and iterative service requirements analysis of real-world systems. Situ

tries to build a Hidden Markov Model (HMM) to deduce desires of an individual user from given

observations (user’s actions and environmental context values), and further analyze user’s

potentially new intentions for driving service evolution. However, Situ encounters difficulties in

desire inference because HMM is not able to encode the causal relations among actions, context

values and desires, nor the complexity of desire transitions, due to: (1) in a HMM, the current

desire is supposed to be independent of neighboring observations [20]. As a result, the relations

of a desire and its previous and following observations cannot be reflected. However, in reality,

previous context values may influence user’s current desire, and following actions and context

values may be determined by the current desire; (2) in a HMM, the probabilities of desire

transitions are stationary [20]. However, in reality, user’s desire change usually depends on

www.manaraa.com

3

current context values, which may be quite dynamic. And because of the disadvantages

mentioned above, Hidden Markov Models are not effective to accurately infer users’ desires, not

to mention performing detection of new intentions. Therefore, in terms of computability, Situ

framework still leaves a lot to be desired.

In this thesis, I propose a general methodology that applies Conditional Random Fields

(CRF) as the mathematical foundation to provide quantitative exploration of users’ new

requirements. CRF is a class of statistical modelling methods often used for encoding known

relationships between observations and constructing consistent interpretations [21]. Here CRF is

used to build the mathematical model for desire inference, which is to infer users’ desires based

on runtime observations of their actions and environmental context values. Since intuitively,

desire inference can be regarded as labeling an observation sequence with desires, CRF is chosen

in our methodology because it is proven to be more accurate for labeling or parsing of sequential

data than traditional statistical methods such as HMM and MEMM (Maximum Entropy Markov

Model) [22]. Simply speaking, CRF is more suitable for our study because the relations among

actions, context values and desires can be better reflected in a CRF model.

This thesis makes the following three contributions:

(1) A CRF-based method is proposed to effectively infer users’ desires based on

observations of their actions and relevant environmental context values.

(2) Three feasible methods are proposed to explore users’ new intentions based on the

results of desire inference.

(3) A new software evolution cycle is put forward based on the intention detection

methodology that I recommend. To demonstrate and validate my methodology, I conduct a two-

round exploration experiment on a user base of 120 participants.

www.manaraa.com

4

This thesis is organized as follows: Chapter 2 briefly reviews the literatures on system

evolution, requirements elicitation, and human desire & intention, and introduces Conditional

Random Fields (CRF) and its applications. Chapter 3 describes the attributes of the domains that

my methodology can be applied in. Chapter 4 presents the basic concepts and the methodology

of building the CRF model and the process of desire inference and new intention detection using

the CRF model. Chapter 5 explains the first round experiment by demonstrating through each

step in our methodology in details, and presents and analyzes the results, and also briefly

presents the second round experiment results, and mainly focuses on evaluating the effectiveness

and efficiency of our methodology on enabling software evolution. Chapter 6 concludes the

thesis with some speculations.

www.manaraa.com

5

CHAPTER 2. BACKGROUND AND RELATED WORK

2.1 Software Evolution and Requirement Elicitation

Generally, software evolution refers to the study and management of the process of

making changes to software over time [23]. Sometimes, software evolution is defined based on

software maintenance, per IEEE’s definition [24]: the process of modifying the software system

or component after delivery to correct faults, improve performance or other attributes, or adapt

to a changed environment. Lientz and Swanson [25] categorized software maintenance into four

different types: adaptive maintenance, perfective maintenance, corrective maintenance and

preventive maintenance. The target of software evolution or maintenance is to implement

possible major changes to the system to ensure the reliability and flexibility of the system [26].

As a large software system continues to evolve, the complexity of the system will grow [27],

meaning that more effective and efficient evolution methods are much needed.

Proposals for change are the drivers for system evolution, and change identification

usually continues throughout the system lifetime. The driving forces of the four maintenance

activities summarized by Lientz and Swanson [25] are:

 Adaptive maintenance: adapt to changes in the system environment;

 Perfective maintenance: adapt to new user requirements;

 Corrective maintenance: patch system drawbacks;

 Preventive maintenance: prevent problems in the future.

Among the above four problems, the incorporation of new user requirements is the core

problem for software evolution and maintenance [9]. Therefore, the capability to accurately and

efficiently obtain users’ new requirements is a critical issue to be addressed.

www.manaraa.com

6

Traditional requirements elicitation process can be considered as an interactive mutual

learning process between the requirements engineer and the customer [28]. The knowledge of

users’ requirements can be obtained from interview [43], feedback [10] or observation of

customers’ activities at their workplace [29]. As users’ requirements are usually implicit and

unpredictable [30], this process mainly depends on requirements engineers’ subjective analysis

and judgment, so it is usually time-consuming and results in inaccurate requirements.

Oftentimes, a cycle of elicitation, modification, development, and deployment takes a long time

to complete, usually several months [19]. Researchers are now facing the steep challenge of

shortening such undesirably long evolution cycles. New technologies that can enable automatic

or semiautomatic requirements elicitation and analysis are very much desired in order to realize

rapid software evolution.

2.2 The Situ Framework

Situ is the first general approach which was proposed for human-intention-driven service

evolution in context-aware service environments. Situ is also the first computational framework

that allows people to model and detect human intentions by inferring human desires as they are

often largely hidden, and capturing the corresponding context values through observations.

Equipped with a prediction mechanism, Hidden Markov Model (HMM), in the process of

intention detection, Situ is supposed to make instant definition of individualized services at

runtime possible, and significantly shorten service evolution cycle.

In order to model and reason human intentions, Situ defines situation as a time-stamped

status that includes user’s desire, as well as user’s actions and relevant context values. It is

suggested that the actions performed can be regarded as the external reflection of human internal

www.manaraa.com

7

mental state, so-called “desire”, and some context value changes are side effects of human

actions that are externally observable. Therefore, through observing user’s actions and context

values, it is possible to infer user’s desire at each observation time-point using an applicable

mathematical mechanism [61]. Furthermore, user’s intention for achieving a certain desire can be

obtained by connecting the situations with the same desire as a sequence. Thus, intention is a

path in a scenario, similar to that of studies in robotics [62]. Formally, situation at a time t, is

defined as a 3-tuple {d, A, E}, in which d is the inferred or predicted user’s desire, A is a set of

actions for achieving a goal which d corresponds to, and E is a set of context values. And an

intention is expressed as I = seq(S1, S2, ..., Sk), in which I is an intention and S1, S2, ..., Sk are a

temporal sequence of situations threaded through a unique desire d.

Figure 2.1 Situ: Framework for service definition with runtime software evolution

As shown in Figure 2.1, instant requirements can be obtained through goal resolution of

the captured intentions. Situ argues that intention change often results in a new goal for the user,

requiring the modification of existing features or new pathways to engage new development,

www.manaraa.com

8

such as creating a new functionality. In this way, the system can be enhanced to satisfy the user’s

new requirements. Since the software evolution process in Situ is semiautomatic, Situ is

considered capable of shortening the software evolution cycles, so that the critical and timely

service individualization can be made.

Based on the intention monitoring methodology in Situ, a system is capable of detecting

intention changes. An intention change occurs when the inferred intention based on the observed

situation sequence is different from any predefined or previous observed intentions. A human

intention change will drive the system evolution, as it indicates that the users have new desires,

which are also the new requirements for the system. The Hidden Markov Model (HMM) is

applied in Situ for intention inferences, and the Viterbi Algorithm (VA), a commonly known and

important algorithm for HMM, is used to find the most probable sequence of hidden states based

on the visible observations.

As Situ is theoretically breaking a new path for service evolution, many practical

problems should be addressed in the future works. For example, how to build an effective model

for desire inference and detection of intention changes, how to resolve users’ new goals and new

requirements, and how to make corresponding changes to the system to adapt to the newly

elicited requirements, etc. Furthermore, the Situ framework still needs large-scale experimental

validation to show its capability and practicality.

2.3 Conditional Random Fields

CRF (Conditional random fields) are a class of statistical modeling methods used to

encode known relationships between observations and construct consistent interpretations [21].

They are often used for labeling or parsing of sequential data, such as natural language text or

www.manaraa.com

9

biological sequences [22], which are quite similar to observed sequential data in our work. There

are several types of CRF models, and the one adopted in this thesis is linear-chain CRF [32].

The general application of the CRF method is sequential labeling, which is to give labels

for a sequence of input data. For example, CRF can be used for Part-of-speech (POS) tagging

[33], in which the goal is to label each word in a sentence with a POS tag such as ADJECTIVE,

ADVERB, NOUN, etc. Before doing this, a set of feature functions are defined to encode the

relations between word (data) and POS tag (label). The general format of a feature function is:

f(S, i, li, li-1) = 1 or 0, in which:

 S is a sequence of input data;

 i is the ordinal number of current data in S;

 li is the label for the ith observation in S;

 li-1 is the label for the (i-1)th observation in S;

 The output is 1 when certain relations specified by the function are satisfied among

S, li and li-1, otherwise the output is 0;

 Each feature function is associated with a weight which indicates its labeling

reliability.

In order to give the best labeling for an input sequence S, the CRF model calculates the

score of every possible sequence-labeling L by adding up the weighted feature functions over all

data in the sentence:

 	|	 	∑ ∑ , , , (1)

(wj is the weight associated with feature function fj. u is the number of feature functions

in the CRF model and v is the length of S.)

www.manaraa.com

10

Then, these values are transformed into probabilities p(L | S) between 0 and 1 by

exponentiation and normalization:

 | 	 |

∑ |

	∑ ∑ , , ,

∑ ∑ ∑ , , ,
 (2)

The sequence-labeling L with the largest p(L | S) will be chosen as the labeling for the

sentence S. To reduce the computation complexity, the Viterbi Algorithm [34] is applied in

computing p(L | S), and the Limited-memory BFGS [35] is a common algorithm used for

estimating the weights of feature functions in CRF model training.

Nowadays the CRF method and its extensions or variants are widely used in pattern

recognition, machine learning and other domains which deal with structured data [22]. The most

popular application of CRF is natural language processing, in which CRF is currently the most

advanced technique for many tasks such as named-entity recognition [36], segmenting addresses

in Web pages [37], Chinese word segmentation [38], and citation extraction from research papers

[39], etc. CRF has also been applied in bioinformatics for protein structure prediction [40] and

RNA structural alignment [41]. In computer vision, grid-shaped CRF is used for image

segmentation [42]; tree-structured CRF is used for objects recognition [44]. CRF also finds

applications in intrusion detection [45] and intent understanding from search behaviors of using

search engines [46].

www.manaraa.com

11

CHAPTER 3. HUMAN-CENTRIC CONTEXT-AWARE DOMAIN

The methodology of new intention detection for system evolution is generally applicable

to the human-centric context-aware domains. I use the term “human-centric” to generalize the

common nature of various application systems in which humans play a central role in driving

system evolution, and the term context-aware to emphasize the physical properties of the system

that is sensor-laden for monitoring users’ actions and system status. To formally describe and

characterize such domains, a first order language, SiSL [51] (situation-centric specification

language), is introduced to specify the entities and essential relations.

3.1 Sorts of Entities in SiSL

SiSL is a first-order language with equality. Standard alphabet of logical symbols: ∧, ∨, ¬,

∃, ∀, ⟹ and ⟺, with a full set of connectives and quantifiers in first-order logic are adopted in

SiSL, and the alphabet of non-logic symbols in SiSL includes predicate symbols, function

symbols, and countable and infinite many individual variable symbols of entities. Besides, some

second-logic terms are used in a few formulas of SiSL.

First of all, three assumptions are proposed for stipulating the application scope of SiSL:

Assumption 1: The domain of discourse of SiSL is a single-agent domain. The agent is

believed to be rational, and has desires and corresponding intentions to achieve certain goals. If

there are multiple users in the system environment, when constructing the domain for a specific

user A, only A’s own desires and actions will be included, while other users’ desires and actions

will not be. In our discussion and inference process, by default, the subject of all actions and

desires is the unique agent in the domain.

www.manaraa.com

12

Assumption 2: The unique active agent is in only one application of the system in a time

period. And the agent has only one desire at a time instant. Meanwhile, the process of desire

transition is memoryless (Markov property), i.e., the conditional probability distribution of future

desires depends only upon the present desire, not on the sequence of desires that preceded it.

Assumption 3: The domain of discourse of SiSL is a sensor-laden computer application

domain. There shall be some sensors deployed by the system to capture the status of the agent,

system, and the environment. The set of context values and actions defined in the SiSL-specified

domain knowledge base are limited by sensors’ observation capability. And the inference of

predefined desires and detection of new intentions, are performed based on the observations of

actions and context values.

According to Assumption 1, each SiSL domain has one unique agent in the system, in

which the desire and actions at an instant shall belong to the same agent, so that the relationships

between the desire and actions can be specified. This assumption rules out the complexity of cases

in which one user’s desire is directly influenced by other users’ actions. E.g. user A changes

his/her desire by observing other users’ actions. However, other users’ influences can be

indirectly reflected in relevant context values. Here is an example: Two users A and B are living

in a smart home environment. In the domain of user A’s smart home system, it is assumed that

user B’s actions don’t have any direct influence on user A’s desire; however, they can trigger

some context value changes, which may have influence on user A’s desire and actions. Such

indirect influence can be described by SiSL.

According to Assumption 2, the agent has only one desire at an instant, i.e., the agent

doesn’t have parallel or concurrent desires. Note that in our discussion, the desires should be

consistent with system goals, i.e., they should be relevant to the system domain. Assumption 2 is

www.manaraa.com

13

also complied with the definition of situation and intention (which will be introduced later in this

chapter): there is only one desire in a situation, and intention can be inferred by observing a

sequence of situations which share the same desire. Additionally, I assume that the transition of

desires should satisfy Markov property, in order to reduce the complexity of the domain, while

still keeping it rich enough for desire inference. Later in section 5.6, our experiment evaluation

results show that this assumption is in fact appropriate.

Assumption 3 can be considered as a prerequisite of the application of our methodology.

Since actions and context values are used as visible states for inferring invisible states (desires),

they have to be observable. In our discussion, the term “sensor” represents all general monitoring

mechanisms. For example, it can be a hardware sensor device, or a monitoring module hard-

coded in the system. It is usually believed that more effective monitoring mechanism can usually

help capture more useful data, and the richer the data are, the better our methodology works.

After delimiting the scope of the domains in which our methodology will be applied, the

basic concepts in SiSL are defined as follows:

Definition 3.1.1 There are five sorts of entities for reasoning about users’ behaviors and

internal mental states in software system domains – action, desire, situation, situation-sequence

and object. Any entity in the domain must belong to exactly one of the five sorts.

Countable and infinite many individual variable symbols can be defined for each sort of

entities. We shall use a, d, o, s and q, with subscripts and superscripts, for variables of sort action,

desire, object, situation and situation-sequence respectively. For example, variables of sort action

can be denoted as a1, a2, …, an, and variables of sort situation-sequence can be denoted as q1, q2,

…, qm.

The basic relations of the five sorts of entities are given Table 3.1.

www.manaraa.com

14

Table 3.1 Lexicon for Basic Theories in the SiSL Ontology

Entities

Action(a) a is an action

Desire(d) d is a desire

Object(t) o is an object

Situation(s) s is a situation

SitSeq(q) q is a situation-sequence

Situation

ActionIn(a, s) a is a user’s action in situation s

DesireIn(d, s) d is the user’s desire in situation s

Before(s1, s2) situation s1 happens before situation s2

After(s1, s2) situation s1 happens after situation s2

StaticSituation(s) s is a static situation

SatisfiedSituation(s) s is a satisfied situation

Situation-
sequence

SituationIn(s, q) s is a situation in situation-sequence q

Initial(s, q) s is the initial situation of situation-sequence q

Final(s, q) s is the final situation of situation-sequence q

Prev(s1, s2, q) s1 is the previous situation of s2 in situation-sequence q

Next(s1, s2, q) s1 is the next situation of s2 in situation-sequence q

Sorts Foundation Axiom: The attribute that any entity in the domain belongs to exactly

one of the five sorts can be expressed by the following axiom:

∀x.{Action(x) ∨ Desire(x) ∨ Object(x) ∨ Situation(x) ∨ SitSeq(x)} ∧ ¬∃x.{[Action(x)

∧ Desire(x)] ∨ [Action(x) ∧ Object(x)] ∨ [Action(x) ∧ Situation(x)] ∨ [Action(x) ∧

SitSeq(x)] ∨ [Desire(x) ∧ Object(x)] ∨ [Desire(x) ∧ Situation(x)] ∨ [Desire(x) ∧

SitSeq(x)] ∨ [Object(x) ∧ Situation(x)] ∨ [Object(x) ∧ SitSeq(x)] ∨ [Situation(x) ∧

SitSeq(x)]}.

www.manaraa.com

15

Sub-sort Entity: Sub-sorts of the five basic-sort entities can also be defined. A sub-sort is

defined as a predicate, and its super-sort is specified using an axiom. For example:

Predicate Button: object ⟶ True ∪ False, represents a sub-sort of the sort object: Button.

And the axiom: ∀x. Button(x) ⟹ Object(x) specifies that the super-sort of Button is object.

Button(Btn_Submit) represents that Btn_Submit is a button, and Btn_Submit is also an object.

3.2 Definition of Action, Desire, Object and Context

Among the five basic sorts of entities, situation is the core concept, and other sorts of

entities can be specified based on situation. The relations between situation and action, desire,

object, situation-sequence respectively can be drawn as Figure 3.1.

Figure 3.1 Relations of different entities in the domain.

The formal definition and description of concepts in SiSL are given as follows:

3.2.1 Definition and Attributes of Action

Action: agent’s behavior performed in the system environment, particularly their

operations on the system interface. We can denote actions using action functions, while we can

also declare constants or variables for actions. The formal definition of action function in SiSL is:

www.manaraa.com

16

Definition 3.2.1 For each n 0, a finite number of function symbols with arity n, and

sorts (object)n action. These functions are called action functions.

An action function takes objects as the input and an action as the output. The domain of an

action function can also be a sub-sort of object, and this sub-sort should be specified when

defining the action function. Some examples of action functions are:

 act_clickMenuoption: Menuoption action. The sort Menuoption is the set:

{Menuopt_Home, Menuopt_Abstract, Menuopt_File, Menuopt_Reviewer};

 act_inputNumber: Number action. The sort Number is the set: {0, 1, 2, 3, 4, 5, 6,

7, 8, 9};

According to the above two definitions, act_clickMenuoption(Menuopt_Home) represents

the action click menu option Home, and act_inputNumber(1) represents the action input number 1.

It’s not necessary to define constant symbols for these actions.

There are two benefits for defining actions as action functions instead of constants:

(1) Classify Actions

Some actions can be classified to be a group. For example, click menu option ‘x’ and click

button ‘y’ can be classified into a group of click action, and input number 0 and input character

‘a’ can be classified into a group of input action. For the same class of actions, the corresponding

action-triggered context value changes or reactions are usually similar, and sometimes they can be

handled in the same way. For example, in the CRF computational framework, there is a feature

function: f(s, i, li, li-1) which states that if the user’s action is input (something) and one of the

context values is: the current page is an abstract submission form, the use’s desire is submit an

abstract. This feature function is easy to be defined if there is an action function input(o) because

the action input can be easily identified.

www.manaraa.com

17

(2) Indicate objects involved in an action

Sometimes we need to analyze the influences of an action on the objects, in this way it’s

important to indicate objects involved in an action. In action functions the action and objects are

split so that the objects can be easily indicated. This attribute is useful for defining the action

determinisms.

Action Occurrence: actions are general definitions, and they cannot express the real-time

behaviors. When we want to present an action is being performed in a situation, we will write a

formula as: ActionIn(a(x1, x2), s), in which a(x1, x2) is an action and s is a situation.

Action occurrence represents the occurrence of an action, and it is denoted as ActionIn(a,

s), which is a predicate. In each situation, each action has a corresponding action occurrence. If an

action is happening in the situation, its action occurrence is true, otherwise it is false. Therefore,

an action doesn’t have situations involved, while action occurrence is a status in a situation.

3.2.2 Definition and Attributes of Desire

Desire: the condition or status of entities that the agent would like to achieve. The desires

drive users to perform actions to achieve certain goals. We usually denote desires using constants

or variables, and we can also define desire functions. The formal definition of desire function is:

Definition 3.2.2 For each n 0, a finite number of function symbols with arity n, and

sorts (object)n desire. These functions are called desire functions.

A desire function takes sort object as inputs and takes sort desire as outputs. The domain

of a desire function can also be a sub-sort of object, and it must be specified when defining the

desire functions. Some example of the desire functions are:

www.manaraa.com

18

 login: Reviewer desire. The sort Reviewer is the set of all reviewer accounts in the

database;

 download: Paper desire. The sort Paper is the set of all paper IDs in the database;

According to the above two definitions, login(John@gmail.com) represents the desire

login reviewer account John@gmail.com, and download(P01) represents the desire download

paper P01. It’s not necessary to define constant symbols for these desires.

Similar to action functions, there are two benefits for defining desire functions instead of

defining constants for desires:

(1) Classify desires

Some desires can be classified to be a group of desires. For example, submit paper P01 and

submit paper P02 can be classified as a group of submit desires, and upload file x and upload file y

can be classified as a group of upload desires. The desires in a group have similar attributes and

can be handled in the similar way.

(2) Indicate objects involved in a desire

Because desires are usually expressed as predicates on objects, it is essential to indicate

objects involved in a desire so that the relations of objects can be easily described. Desire

functions are useful for defining desire satisfaction axioms.

Desire Occurrence: desires are general definitions, and they cannot express the real-time

human mental states. When we want to describe user’s desire in a situation, we will write a

formula as: DesireIn(d(x1, x2), s), in which d(x1, x2) is a desire and s is a situation.

Desire occurrence represents the occurrence of a desire, and it is denoted as DesireIn(d, s),

which is a predicate. In each situation, each desire has a corresponding desire occurrence. If a

www.manaraa.com

19

desire is happening in the situation, its desire occurrence is true, otherwise it is false. Therefore, a

desire doesn’t have situation involved, while desire occurrence is a status in a situation.

3.2.3 Definition and Attributes of Object

Object: any entity other than desire, action, situation and situation-sequence in the

domain, such as user, key ‘x’, button “Submit”, etc. The object can be created or destroyed in a

situation. For example, P10 is created when a paper is submitted and its ID in the database is 10.

And when the paper is deleted, the object is destroyed.

The object set is a catch-all set. It normally refers to the concrete entities, whereas it can

also refer to the abstract entities, such as the numbers. We use sub-sorts to define specific

categories in the sort object. For example, we can define predicate Integer to represent the integer

set. Some concrete objects have lifespan which is the duration between its created situation and

destroyed situation. An object can also exist forever, and its lifespan is sit- to sit+.

As presented before, user’s desires are inferred based on observations of user’s actions and

context values in the system environment. Below we give the definition of contexts.

3.2.4 Definition and Attributes of Context

Context: any information that is used to characterize the status of objects in the domain of

discourse. It can be regarded as relations between objects and situations. There are two kinds of

contexts as follows:

 Functional Context: for each n 0, a finite number of functional symbols of sorts

(object)n situation object. They denote contexts such as: titleOfPaper(x, sn),

numOfSubmittedPapers(sn).

www.manaraa.com

20

 Predicate Context: for each n 0, a finite number of predicate symbols of sorts

(object)n situation. They denote relations such as: CurrentPage(Page_Home, s0),

LoggedOn(x, s1).

Notice that a context always takes sort situation as an argument (and always the last

argument), so contexts are situation dependent. Apart from situation, only terms of sort object are

arguments of a context, so contexts are status of objects in situations.

The action functions and desire functions are not contexts, although they are also used to

describe the instant status of the domain. There are two reasons:

 action functions and desire functions do not describe the status of the system, but the

user;

 action functions and desire functions do not take situation as a parameter;

The set of contexts consists of functional contexts and predicate contexts. A functional

context is also a function, and a predicate context is a predicate. We can simply denote the

relations of contexts, predicates and functions as follows:

{functional context} ∪ {predicate context} = {context}

{context} ∩ {function} = {functional context}

{context} ∩ {predicate} = {predicate context}

Functions and predicates in SiSL are classified into several kinds. The classifications of

predicates are:

 predicate contexts;

 domain-independent predicates: domain independent relations, whose values are

independent from the domains, such as ProgrammingLanguage(PHP),

ValidEmailAddress(Michael@gmail.com);

www.manaraa.com

21

 domain-specific predicates: facts in the domain, whose values are dependent on the

domains, such as: LanguageOf(MyReview, PHP), AcceptedFileType(PDF,

MyReview);

The classifications of functions are:

 functional contexts;

 action functions;

 desire functions;

 domain-independent functions: such as sumof(1, 2), distance(NewYork, Chicago);

 domain-specific functions: such as userTypes(MyReview), url(homepage).

Context values are discrete. In practice, the values of some contexts, such as the

temperature, are infinite and keep changing all the time. But in SiSL, the value set of each context

is finite, so that its runtime value can be captured. For example, to measure the temperature we

use a thermometer which has finite calibrations.

3.3 Definition and Attributes of Situation

Based on the introduction of the above concepts, I will give the definition of situation as

follows:

Definition 3.3.1 A situation is an instant status of the user and the system environment,

including the user’s behaviors and internal mental states, and the status of objects in the

environment.

The basic attributes of situation in SiSL are:

(1) Situation is a sort of entity in SiSL, and it can only be denoted as a constant or a

variable. As a comparison, situation is denoted as a triple {d, A, E}t in Situ;

www.manaraa.com

22

(2) The implication of situation is the instant domain status. The following statuses in

the domain are changing over time and needed to be determined at an instant (as assumptions of

SiSL, only one active user in the domain and the user only has one desire at an instant): the user’s

desire; the user’s actions; the value of each context. Therefore, the implication of situation in SiSL

is same to that in Situ;

(3) The implication of a situation is completely described when the values of desire

occurrences, action occurrences and contexts at an instant are all determined. Because situation is

a sort of entity, it cannot directly describe the statuses of the user and the environment. For

instead, three kinds of predicates in SiSL are used to express the implication of a situation:

 DesireIn(d, s), desire occurrence: because the user only has one desire in a situation,

there is only one desire occurrence whose value is true in a situation. E.g., if the

user’s desire is d1 in situation s, there is: DesireIn(d1, s ∧) ¬DesireIn(d2, s ∧)

¬DesireIn(d3, s) …;

 ActionIn(a, s), action occurrence: there could be more than one action occurrences

are true in a situation;

 Context: the statuses or relations of objects in a situation.

In sum, in order to completely describe a situation, the values of following statuses need to

be determined:

 All the desire occurrences: we need to determine which desire occurrence is true,

and set the rest to be false;

 All the action occurrences: some of them can be determined based on the

observation results of the deployed sensors;

www.manaraa.com

23

 All the context values: some of them are determined based on the observation results

of the deployed sensors;

3.3.1 Advantages of the definition of situation in SiSL

The definition of situation is critical in SiSL because it is the core concept and other

concepts are defined based on situation. Followings are some possible ways to define situation:

(1) Bijective function on time: time-point ⟶ situation. In this way, there is a situation

at every time-point, and every situation is unique in the domain. This definition brings two

difficulties:

 An intention is usually defined as a sequence of situations for achieving a goal. If

situations are continuous, the intention should be redefined to exclude unimportant

and redundant situations;

 Because continuously observing situations is impossible, the relations of the “real

world” and the “observed world” must be specified, i.e., how to reason all the

situations, including the unobserved situations, based on the observed situations.

(2) Surjective function on time: sit(t) = {d(t), A(t), C(t)}, in which d(t) is the user’s

desire at time-point t, A(t) is the set of all actions happen at t, C(t) is the set of values of all

contexts at t. In this definition, the situations are also continuous but two situations can be the

same if the desires, actions and context values at the time-points of the two situations are the

same. Some problems with this definition:

 d(t), A(t) and C(t) should be specified first. E.g., the action at time-point t is actually

the action occurrence at time-point t, thus the action occurrence should be clearly

defined. Similarly, the desire occurrence should also be defined;

www.manaraa.com

24

 In this definition the desire occurrences and action occurrences are defined on time-

point. However, in SiSL, desire occurrences and action occurrences are defined on

situation. E.g., DesireIn(d, s) means the user’s desire in situation s is d.

(3) A situation is an instant status when an action effects, a context value changes or a

desire arises. In this way, the situations are discrete, and they are bijections on action effect,

context value changes or desire arising. Followings are the problems of this definition:

 The action effect and desire arising should be clearly defined. Two new sorts:

action_effect and desire_arising are necessary;

 The action effects are hard to specify, because action effects are often referred to

context value changes, but the effects on context values of every action are complex.

Besides, the end of a desire should also be defined as a situation. In this way, the

theory is more complicated.

(4) Situations are functions on action, context value and desire. E.g., a new situation

can be defined as: sit2 = do(action1, sit1); sit2 = changeTo(cont1(value1, s1), value2); sit2 =

arise(desire1, sit1). The problem of this definition is:

 There will be no concurrencies of actions, which sometimes are important for

determining desires. A possible solution can be: add new functions like: sit3 =

end(action1, sit2). However, the theory will be more complicated and hard to be

specified.

(5) Situations are functions on snapshots, which represent the instants of an

observation in practice. An observation can be action-triggered, context value change triggered or

periodically taken. There are some problems with this definition:

www.manaraa.com

25

 Impossible to describe the relations between two consecutive situations, since they

could have no relations and some action occurrence and context value changes might

be missed;

 A solution can be: specify time-point as: the instant of each action effects, each

context value changes or each desire rises. Then this definition is same to (3).

In SiSL, the definition of situation is similar to definition (1), while the time attribute is

hidden. To deal with the problems which are given in (1), the following changes are made:

 The definition of intention is slightly changed to exclude unimportant and redundant

continuous situations;

 In practice we don’t capture all the situations, but only the situations when

significant action occurs and context value changes. We analyze the “real world”

based on the “observed word” through using the CRF computational framework.

3.3.2 Attributes of situation in SiSL

Some attributes of situation are presented below:

(1) Single desire and multi actions in a situation

According to Assumption 2, a situation can contain no more than one desire, while it can

contain more than one action, which are performed simultaneously. There are:

(∀s, d1, d2).{DesireIn(d1, s) ∧ d1 d2 ⟹ ¬DesireIn(d2, s)}

(s, a1, a2).{a1 a2 ∧ ActionIn(a1, s) ∧ ActionIn(a2, s)}

An example of more than one action being performed in one situation is: the user presses

button “z” with his right hand and presses button “Shift” with his left hand, and his desire is

inputting “Z”.

www.manaraa.com

26

(2) Situations are continuous

In previous sections, I already stated that the situations are continuous. To deal with the

continuity and infinity of situations, the following predicates are proposed:

 Dissimilar(sit1, sit2): at least one action occurrence, context value or desire

occurrence is different in situation sit1 and sit2, whereas two situations are always

different;

 Transition(sit1, sit2): sit1 and sit2 are dissimilar and no other situation between them

is dissimilar to both of them, and sit1 happens before sit2. There is no situation could

transit to two different situations:

¬ s1, s2, s3.Trans(s1, s2) ∧ Trans(s1, s3)

 Reach(sit1, sit2): situation reaching denotes the reaching from a situation to another:

(∀s1, s2). Reach(s1, s2) ⟺ Trans(s1, s2) ∨ ∃s3.(Reach(s1, s3) ∧ Reach(s3, s2)))

 TransitionPoint(sit): sit is a situation which will become Dissimilar immediately;

 ConsistentPeriod(sitt1, sitt2): [sitt1, sitt2] is a period in which any two situations are

not Dissimilar.

The following diagram shows the continuity and transition of situations:

Figure 3.2 Continuity and transition of situations in SiSL

www.manaraa.com

27

(3) Time Attribute

In SiSL, there is no entity for representing time, but situation has the time attributes. There

are two predicates for specifying the time attribute of situation:

 Before(s1, s2): s1 happens before s2;

 After(s1, s2): s1 happens after s2.

The time attribute of situation has the following aspects:

1) Ordering: the sequence of situations is linearly ordered, forwards to the future and

backwards into the past. There is an axiom to specify the ordering attribute of situation in SiSL:

(∀s1, s2). Situation(s1) ⋀ Situation(s2)	⋀ s1 ≠ s2	⟺ Before(s1, s2) ⋁ After(s1, s2)

2) Infinity: the situation line is infinite, with two endpoints: sit- and sit+;

3) Density: the set of situations is dense, i.e., between any two situations there are

infinite situations:

(∀s1, s2). Before(s1, s2)	⟺ ∃s3. Before(s1, s3) ⋀ Before(s3, s2)

4) Instant: In a situation, the domain status, including action occurrence, desire

occurrence and context values, stagnates and nothing changes;

5) Abstraction and Instances: the time attribute contained in situations does not reflect

the real time, but its abstraction. In different domains, the time formats can be different.

For example, if a domain uses GMT as the real-time format, a function gmt(sit) can be

defined to get the GMT time in a situation, and a time theory can also be built to specify the

duration and ordering of situations. For example, an axiom in the GMT time theory is:

(∀s1, s2, d). d = duration(s1, s2) ⟺	

gmt(s2) = time_add(gmt(s1), d) ∧ Situation(s1) ∧ Situation(s2) ∧ Object(d).

www.manaraa.com

28

In the above formula, duration(t1, t2) is a function calculates the duration between two

GMT time duration between two situations s1 and s2 and time_add(gmt(s1), d) is a function adds

duration d to the GMT time gmt(s1) and gets a new GMT time. The function time_add can be

specified using other axioms. We need a complete time theory which can be referred to the time

theory in Process Specification Language (PSL).

(4) Static situation

A static situation is a situation without any action. A sub-sort of situation: StaticSituation

is defined to denote the static situations. There is:

StaticSituation(s) ⟺ Situation(s) ∧ ∀a.¬ActionIn(a, s)

Because the context values changes are not necessarily directly triggered by the actions, so

sometimes there are some situations without any action, and these situations are static situations.

(5) Satisfied situation

A satisfied situation is a situation in which the desire is satisfied. Situation s is called a

satisfied situation if only if the desire in this situation is satisfied. A sub-sort of situation:

SatisfiedSituation is defined as:

SatisfiedSituation(s) ⟺ Satisfied(d(s), s)

Satisfied(d(s), s) can be decided to be true or not based on the desire satisfaction axioms,

which will be presented later.

3.4 Definition and Attributes of Situation-Sequence and Intention

In this section, I give the formal definition of situation-sequence and intention. Situation-

sequence is a sort of entity in SiSL, and an intention is a special situation-sequence with specific

attributes.

www.manaraa.com

29

3.4.1 Definition and Attributes of Situation-Sequence

Definition 3.4.1 A situation-sequence is a chronological sequence of situations.

I use a special notation ‘~’ to denote a situation sequence. The definition is:

Definition 3.4.2 A function symbol ~: (situation ∨　situation-sequence) × (situation

∨　situation-sequence) ⟶ (situation-sequence ∨ False), which denotes the formation of

situation-sequences.

According to the above definition, a situation-sequence can be denoted as:

situation-sequence ≡ situation ~ situation

 ∨ situation ~ situation-sequence

 ∨ situation-sequence ~ situation

 ∨ situation-sequence ~ situation-sequence

The function ~ will return False in the following cases: (1) sit1 ~ sit2 = False if sit1 occurs

after sit2; (2) sit1 ~ sitseq1 = False if sit1 occurs after at least one situation in sitseq1; (3) sitseq1 ~

sit1 = False if sit1 occurs before at least one situation in sitseq1; (4) sitseq1 ~ sitseq2 = False if the

last situation in sitseq1 occurs after the first situation in sitseq2.

There are some attributes of a situation-sequence as below:

I. Basic axioms: there are some basic axioms for an intention as follows:

 (∀q, s).Initial(s, q) ⟹ ∀s1.¬Prev(s1, s, q)

 (∀q, s).Final(s, q) ⟹ ∀s1.¬Next(s1, s, q)

 (∀q, s1, s2).Next(s1, s2, q) ⟺ Prev(s2, s1, q))

(∀q, s).{SituationIn(s, q) ∧ ¬Initial(s, q) ∧ ¬Final(s, q) ⟹ (s1, s2). Prev(s1, s, q) ∧

Next(s2, s, q)}

www.manaraa.com

30

II. Temporally ordered: the situations in a situation-sequence are temporally ordered.

For any two consecutive situations in a situation-sequence, the latter situation occurs after the

former situation:

(∀q, s1, s2).Prev(s2, s1, q) ⟹ Before(s2, s1)

(∀q, s1, s2).Next(s2, s1, q) ⟹ After(s2, s1)

III. Reachability: All the situation reaching is possible:

(∀q, s1, s2).Next(s2, s1, q) ⟹ Reach(s1, s2)

Intuitively, a situation-sequence should not be defined as a sort, but a set of situations.

However, it will be hard to describe the attributes of situation-sequence if it is as set, because the

first (second) order logic doesn’t allow the definitions of functions and predicates on sets. For

example, Final(s, q) is not allowed if q is a set of situations.

3.4.2 Definition and Attributes of Intention

Definition 3.4.3 An intention is a chronological sequence of situations which tends to

satisfy a certain user’s desire.

An intention is defined as a special situation-sequence with specific attributes in SiSL. An

intention q has the following attributes:

 All the situations in the sequence have a same desire: SameDesire(q);

 Any pair of adjacent situations in the sequence is dissimilar: DissimilarSeq(q);

o Exact one situation in a ConsistentPeriod is chosen in the sequence, and it is not

necessary the situation at the Transitionpoint.

 The user’s desire is finally satisfied, but it’s not satisfied in the process:

SatisfiedSeq(q);

www.manaraa.com

31

o The final situation in the intention is a satisfied situation but not any situation

before the final situation is a satisfied situation.

 All relevant situations are involved: CompleteSeq(q).

o For any pair of adjacent situations (si, si + 1) in an intention, there is no situation

which is between si and si + 1, dissimilar to si and si + 1, and has the same desire

with si and si + 1.

Based on the above attributes, there is:

Intention(q) ⇔ SameDesire(q) ∧ SatisfiedSeq(q) ∧ CompleteSeq(q) ∧ DissimilarSeq(q)

In practice, we can only capture the sub-intention of an intention, and a sub-intention is a

sub-situation-sequence of an intention with the same end situation.

3.5 Situation Pattern and Intention Pattern

In this section, I will introduce the formal definitions and attributes of situation pattern and

intention pattern.

3.5.1 Definition and Attributes of Situation Pattern

Situation is the catch-all status of the domain and it can only be generated at runtime. To

analyze the properties of situations and relations between situations, situation pattern is defined to

describe the common attributes of possibly appearing situations. The definition of situation

pattern is:

Definition 3.5.1 A situation pattern inscribes the common attributes of a class of

situations which possibly appear in practice. It must include the user’s current desire, and the

www.manaraa.com

32

actions determined by the desire associated with the context values. The irrelevant actions and

contexts should not be included in a situation pattern.

The situation patterns are expressed as unary predicates on situation. For example:

SP1(s) ⟺ DesireIn(Des_SubmitAbstract, s) ∧ ActionIn(act_click(Menuopt_Abstract), s)

The attributes of situation pattern and the differences between situation and situation

pattern are:

(1) Situation pattern describes the attributes of situations, so different situations can

have the same situation pattern, while a situation is unique in the domain;

(2) Situation pattern doesn’t have the time attribute, and it can be predefined in the

domain knowledge base, while situation can only be generated at runtime;

(3) Situation pattern describes the significant attributes of situations and discard some

unimportant or irrelevant attributes, while situation is the catch-all status of the domain;

(4) The desire, actions and context values involved in a situation pattern must satisfy

the action determinisms, i.e., the actions are taken from a set of possible actions determined by the

desire and context values;

In the domain knowledge base, there are several predefined situation patterns, which are

expressed as predicates. In practice, situations are observed and their situation patterns will be

determined.

3.5.2 Definition and Attributes of Intention Pattern

Intention pattern: an intention pattern can be viewed as a standard/designed sequence of

situations for achieving a desire, while the runtime intentions are usually more complicated

www.manaraa.com

33

because they may contain errors, repeats, interruptions, restarts, etc. The attributes of intention

pattern are as follows:

(1) The intention pattern is defined based on situation patterns, i.e., the attributes of

situations contained in an intention pattern is described using situation pattern;

(2) The last situation in an intention pattern must be a satisfied situation because the

desire must be satisfied in the end of the intention. The situation pattern of the last situation must

contain the attribute: satisfied, and other necessary attributes for specifying the intention;

(3) Intention patterns represent the standard process of users’ operations on the system

to achieve certain desire. Intention patterns are usually derived from the use case scenarios of a

software system, while the practical intentions may contain errors, interrupts, repeats or restarts;

(4) Intention patterns reflect the design of the system because they mainly describe

user’s operations on the system.

(5) Intention patterns are defined as predicates, and specified using axioms. For

example:

IP1(i) ⟺	SP1(initialOf(i)) ∧ SP6(finalOf(i)) ∧

 {SP2(nextOf(initialOf(i), i)) ∨ SP3(nextOf(initialOf(i), i))} ∧

 {∀s.SP2(s) ∧ SituationIn(s, i) ⟹ SP2(prevOf(s, i)) ∨ SP3(prevOf(s, i))} ∧

 {∀s.SP4(s) ∧ SituationIn(s, i) ⟹ SP2(prevOf(s, i)) ∨ SP5(prevOf(s, i))} ∧

 {∀s.SP5(s) ∧ SituationIn(s, i) ⟹ SP4(prevOf(s, i)) ∨ SP5(prevOf(s, i))} ∧

 SP5(prevOf(final(i), i)).

IP1 is an intention pattern predicate. The right side of the above formula specifies the

attributes of the intention pattern. Any situation sequence which satisfies the attributes can be

viewed to be IP1.

www.manaraa.com

34

3.6 Basic Axioms in SiSL

In this section, I will introduce the basic axioms in SiSL. The relationships among

different entities in SiSL are significant for constructing the domain knowledge base. The three

kinds of relations are fundamental in SiSL:

 The relation between action and desire: because user’s actions are mainly determined

by his desire and the current context values, and there is only one active user during

a time period in the domain (assumption 1), the relation between action and desire

can be specified using certain axioms, which are called action determinism in SiSL;

 The relation between action and context: context value changes are side effects of

human actions that are externally observable. How to reach certain context values

based on actions are specified by context value determinisms in SiSL;

 The relation between context and desire: the conditions (a set of context values)

under which a desire is satisfied are specified by desire satisfaction axioms in SiSL.

The above three kinds of axioms are introduced as below:

(1) Action Determinism: Action determinism: The set of possible actions in any

situation is determined by the desire and context values in the current situation. The action

determinism is represented as the following formula:

ActionIn(a(x1, …, xn), s) ⟹ a(x1, …, xn, desireOf(s), s))

a(x1, …, xn, desireOf(s), s) is a formula consists of predicates, connected by logical

symbols, and desireOf(s) is a function returns the desire in situation s. a(x1, …, xn, desireOf(s),

s)) is a sentence, with no free variable.

www.manaraa.com

35

Action Determinisms are used to encode the relations between actions and desires, as well

as context values, and they mainly describe the user aspect of the domain. Action determinisms

usually describe user’s rational behaviors. An example of action determinisms is:

ActionIn(act_click(Btn_Admin), s) ⟹

{desireOf(s) = Des_CheckSystemInfo ⋀

curPageOf(s) != (Page_AdminLogin ⋁ Page_AdminMenus)} ⋁

desireOf(s) = Des_TestSystem

The explanation of the above formula is: when the user’s action is “click menu option

Btn_Admin”, his desire is supposed to be one of the following cases: “check the system

information (if the current page is not ‘admin login’ or ‘admin menus’)” or “test the system”.

Notice that in the formulas, the connection symbol is “⟹” not “⟺” because “⟸” that means the

user will perform the action at every time-point when the user has the desire.

The action determinisms are very useful for defining the abnormal behaviors in the CRF

models because they are usually defining the normal cases.

(2) Context value determinism: The values of some contexts in future situations are

determined by the actions and context values in the current situation, while other context values

are not influenced by any action, depending on the nature of those actions and contexts. I define

the context value determinisms instead of the action affect axioms because:

1) Some context values are not affected by the actions directly, such as the temperature,

so the action affect axioms cannot comprehensively explain the context value

changes;

2) Some context value changes can be triggered by different actions. It’s better to put

these action affects together;

www.manaraa.com

36

3) The actions may have no impact on some context values. These un-changes should be

specified.

Therefore, I define the context value determinisms instead of the action affect axioms. In

the context value determinisms, the following information is included:

1) The context value changes triggered by actions;

2) The context value changes not triggered by actions;

3) Context value un-changes.

The following assumptions are preconditions for defining context value determinisms:

1) The value set of a context is finite and discrete, but the set of situations is infinite

and continuous;

2) Context value changes complete instantaneously, i.e., if the value of a context c

changes from a to b, there is no intermediate state other than a and b occurs;

3) The beginning and the end of an action complete instantaneously;

4) The beginning and the end of a desire complete instantaneously;

5) Sometimes, the end of an action and the change of a context value occur

simultaneously if the context value change is directly triggered by the action. This kind of

assumptions can be made according to the practical cases.

There are two kinds of context value determinisms in SiSL: predicate context value

determinism and functional context value determinism.

The predicate context value determinism can be expressed as the following sentence:

p(o1, …, on, s) ⟺ p(o1, …, on, s)

p(o1, …, on, s) is a formula consists of predicates, connected by logical symbols. For

example, a predicate context value determinism is:

www.manaraa.com

37

Loggedon(x, s) ⟺

{Loggedoff(x, preSit(s))	∧	pageOf(preSit(s)) =

 (Page_ReviewerLogin ⋁ Page_AdminLogin) ∧

 ActionIn(act_click(Btn_Login), preSit(s)) ∧

 content(TextBox_Account, preSit(s)) = x ∧

 content(TextBox_Password, preSit(s)) = pswOf(x)} ⋁	

 {Loggedon(x, preSit(s))	∧	 ActionIn(act_click(Btn_Logoff), preSit(s))}.

The explanation of the above sentence is: the user x is logged on in situation s, if the

following conditions are satisfied in the previous situation preSit(s): the page is

“Reviewer_Login” or “Admin_Login”, the user clicks button “Submit” and the content in the

textbox “account” is x and the content in the textbox “password” is the password of x, while x is

not logged on (all these conditions are observable); or x is logged on and the user doesn’t click the

button “log off”.

A functional context value determinism is a sentence as:

f(o1, …, on, s) y ⟺ f(o1, …, on, y, s)

f(o1, …, on, s) is a formula consists of predicates, connected by logical symbols. An

example of functional context value determinism is:

numOfPapers(s) = x ⟺

numOfPapers(preSit(s)) = x-1	∧	pageOf(preSit(s)) = Page_SubmitAbstract ∧

ActionIn(act_click(Btn_Submit), preSit(s)) ∧ error(preSit(s)) = NULL.

The explanation of the first sentence is: the number of papers is x in situation s, if the

following conditions are satisfied in the previous situation preSit(s): the page is “Submit

Abstract”, the user clicks button “submit” and there is no error on the page.

www.manaraa.com

38

In some cases, the context values can only be obtained by several simultaneous actions.

For example, character ‘Y’ can only be obtained by simultaneously pressing “Shift” and ‘y’ in one

situation.

The benefits for defining context value determinisms are:

1) The context value determinisms are useful for inferring user’s actions when we

cannot capture the actions directly but can only observe the context values;

2) The relations of some situations can be specified. In practice, we usually take a

snapshot of a situation when action occurs or context value changes. Therefore, the relations of

the consecutive situations in a situation sequence we capture in practice can be determined.

Furthermore, the situations changing process in a sequence can be reasoned if significant action

occurrences and context value changes can be captured.

(3) Desire Satisfaction Axioms: A desire is satisfied when a set of context values are

reached in the current situation. Intuitively, a desire should be defined as a (set of) predicate

among objects, and the desire is achieved when the (set of) predicate is true. However, a predicate

cannot return a desire as the output (it only returns “true” or “false”), so desires should be defined

as a sort of entities, and there is an additional desire satisfaction axiom for specifying the

conditions under which a desire is achieved.

For every desire, there is a desire satisfaction axiom in the following form:

Satisfied(d(x1, …, xn), s) ⟺ d(x1, …, xn, s)

Hd(x1, …, xn, s) is a formula consists of predicates, connected by logical symbols. For

example:

Satisfied(submitBefore(x, t), s) ⟺ Submitted(x, s) ∧ gmt(s) < t

www.manaraa.com

39

The translation of the above sentence is: the user’s desire: submit x before time t, is

satisfied in situation s if the status of x is “submitted” and the time-point of s is before t. The

desire satisfaction axioms are used for determining satisfied situations in practice, because the

context values in d(x1, …, xn, s) should be observable.

According to Axiom I, actions performed can be regarded as an external reflection of

human internal mental state in a specific circumstance. For example, an agent wants to log into

his email inbox. When the network speed is good, he usually chooses the normal view; when the

webpage stays on buffering for a long time, he may switch to a simplified view to speed up the

process, or may keep on waiting. In both cases, the agent wants to satisfy the same desire,

however, has two different possible actions, and his decision to choose which action to perform

should conform to certain probability distribution depending on the context value (the network

speed).

Axiom II provides a theoretical explanation of relations between actions and context

values. It states that some context value changes are the results of agent’s actions. These context

value changes are directly or indirectly influenced by the actions, while other context values may

not be influenced by any action, such as the time of the day. To build a complete domain

knowledge base, the context values for all contexts, including those can be influenced by actions

and those cannot, should be specified. While in practice, such context value determinisms can be

encoded into a mathematical model through learning.

Axiom III indicates that desire changes may depend on the context values in current

situation, because if the ideal context values are reached, i.e., the agent’s desire is satisfied, a new

desire is more likely to emerge, otherwise the desire is less likely to change.

www.manaraa.com

40

Given the above axioms, we can establish certain determinative connections from desire to

action, to context value, and then to desire changes. Furthermore, to completely describe the

domain, the determinative relations from each desire to each action, from each action to each

context value, and from each context value to each desire, all should be specified. However, in

practice, agent’s action selections and desire changes sometimes may be random and may not

strictly conform to our axioms, because human are such complicated beings, and sometimes are

unpredictable. But from a statistical point of view, based on long-time observations and with the

help of suitable mathematical methods, we can try to build a computational model to reflect the

patterns of agent’s action selections and desire changes in those commonly seen situation

sequences, which should roughly satisfy Axiom I, II and III, as I believe. Hence, the Axioms

proposed above can be used as the criteria for selecting our observation means and mathematical

methods.

www.manaraa.com

41

CHAPTER 4. DESIRE INFERENCE AND NEW INTENTION DETECTION USING CRF

In this chapter, I present a methodology of new intention detection for software

evolution. In the previous chapter, I explained the application fields of my methodology, which

are human-centric context-aware domains. My methodology is supposed to be applicable in

different types of software systems, e.g., dynamic websites, location-based mobile applications,

smart home systems, etc., as long as they are human-centric and context-aware. I use the term

“human-centric” to generalize the common nature of various application systems in which

humans play a central role in driving system evolution, and the term context-aware to emphasize

the physical properties of the system that is sensor-laden for monitoring users’ actions and

system status. Different from many existing work [55], [56], [57] that are system/application-

specific, my methodology targets at the human-centric character of a class of systems, making

itself generally applicable, flexible, and adaptive in a wide range of applications. By

characterizing and formalizing the nature of the target application domains, I aim at clarifying

the following problems:

 To embody the human-centric characters, what essential entities and relations need

to be formalized? And how to formalize them?

 To infer human desires, what kinds of states, i.e., data shall be captured? What’s the

logical process of inference?

 How to choose suitable mathematical method to infer human desires based on

observations?

 Based on observations and inferred desires, how to filter and formalize new

intentions? And how to further elicit new requirements to enable software evolution?

www.manaraa.com

42

To answer the above research questions, in the following paragraphs, I introduce the

construction of domain knowledge base in section 4.1. Then in section 4.2, I introduce the

principle of desire inference and new intention detection, and discuss the observation means, and

the principle for desire inference and new intention detection. In section 4.3, I theoretically

explain why the CRF method is chosen as the mathematical foundation, and propose a step-by-

step methodology to infer human desires, followed by three methods for detecting users’ new

intentions. Finally in section 4.4, I discuss how to make corresponding improvement to the

system based on detected new intentions.

4.1 Knowledge Base of a Human-centric Context-aware Domain

The domain knowledge base is the basis for desire inference, new intention detection and

system evolution. The following diagram shows the basic elements in the SiSL domain

knowledge base and its usefulness in our framework.

Figure 4.1 SiSL Domain Knowledge Base and its applications

In the SiSL domain knowledge base, there are the following items:

(1) A set of different sorts of entities;

www.manaraa.com

43

 Predefined entities: desires, actions and objects

 Runtime entities situations, situation-sequences (including intentions);

(2) A set of functions and predicates;

 Contexts, situation patterns and intention patterns;

 Domain independent functions and predicates;

 Domain specific functions and predicates.

(3) A set of axioms;

 Action determinisms;

 Context value determinisms;

 Desire satisfaction axioms;

The prerequisite knowledge for constructing the initial SiSL domain knowledge base (KB)

is user’s requirements on the system: the use case scenarios and the UML models.

Knowledge Base Construction: the process of constructing the initial KB of a SiSL

domain is:

(1) Specify the use case scenarios based on user’s requirements and the system design.

For example, a use case scenario “upload a paper” can be described as follows:

Active stakeholders: author

Process of uploading a paper:

1) Click the menu option “Upload a file”;

2) Input paper ID and password, click button “Submit”;

 Alternative 2.1: click button “Send me my password”;

 Exception 2.1: wrong ID or password, error message shows on the page;

3) On the following page, click “choose file” to upload a file;

www.manaraa.com

44

 Alternatives 3.1: modify contents in the form to change the paper information;

4) Click button “Submit”;

 Exception 4.1: error message shows on the page;

Outcome: The uploaded file is stored in the file folder; the item of this paper in the

database is indicated as “uploaded”; a confirmation email is sent to the author; the confirmation

message appears on the top of the page.

(2) Define the desires, actions, contexts and objects based on the use case scenarios

Desires: a desire is defined for a use case scenario, which is usually a process for fulfilling

a user’s goal. For example, a desire: Des_UploadPaper is defined for the use case scenario

“upload a paper”;

Actions: user’s operations on the system involved in the use case scenario are defined as

actions. The occurrences of actions should be observable by sensors deployed in the system. For

example, the actions: act_click(Menuopt_UploadPaper), act_click(Btn_Submit) can be defined to

represent the operations: click menu option “Upload a file” and click button “submit”;

Objects: the physical and abstract objects involved in the use case scenarios are defined as

objects. For example, objects Menuopt_UploadPaper and Btn_Submit are defined to represent

menu option “Upload a file” and button “submit” respectively;

Contexts: the status of objects and the relations among objects involved in the use case

scenarios are defined as contexts. Each context has a set of values, and the value set of a predicate

context is {True, False}. The values of contexts should be observable by sensors deployed in the

system. For example, MsgOn(Error_NoFile, Page_UploadPaper, s) is a predicate context and it

represents that the error message Error_NoFile is (or not) on the page Page_UploadPaper.

(3) Define situation patterns based on the actions, desires and contexts

www.manaraa.com

45

Generally, a step in the use case scenario will be transferred to a situation pattern, which

should contain the user’s current desire, user’s current actions and context values which are

relevant for inferring user’s desire.

For example, for the first step in the use case scenario “Submit a Paper”, there is a

corresponding situation pattern SP1 defined as:

SP1(s) ⟺

DesireIn(Des_UploadPaper, s) ∧	ActionIn(act_click(Menuopt_SubmitPaper), s).

Some other situation patterns defined for the use case scenario “Submit a Paper” are:

SP2(s) ⟺ DesireIn(Des_UploadPaper, s) ∧ ActionIn(act_click(Btn_Submit), s) ∧

 pageIn(s) = Page_PaperLogin;

SP3(s) ⟺ DesireIn(Des_UploadPaper, s) ∧ ActionIn(act_click(Btn_SendPsw), s) ∧

 pageIn(s) = Page_PaperLogin;

SP4(s) ⟺ DesireIn(Des_UploadPaper, s) ∧ ActionIn(act_click(Btn_ChooseFile), s) ∧

 pageIn(s) = Page_UploadPaper;

SP5(s) ⟺ DesireIn(Des_UploadPaper, s) ∧ ActionIn(act_click(Btn_Submit), s) ∧

 pageIn(s) = Page_UploadPaper;

SP6(s) ⟺ DesireIn(Des_UploadPaper, s) ∧ pageIn(s) = Page_UploadPaper ∧

 MsgIn(Msg_UploadSuccess, s).

The above situation patterns describe the possibly appearing situations in the process of

uploading a file. However, these situation patterns haven’t completely described the practical

situations. For example, the possible error messages showing on the page, the contents in the

input boxes are not included in any above six situation patterns.

(4) Build the transition relationships for the predefined situation patterns

www.manaraa.com

46

The transition relationships among different situation patterns should be specified so that

intention patterns can be defined. For example, situations with situation pattern SP1 may be

followed by situations with situation pattern SP2 or SP3, and situations with situation pattern SP2

and SP3 may be followed by situations with situation pattern SP4.

In first-order logic, the relations among predicates cannot be expressed, so we can draw a

situation transition diagram to express the transition relationships of situation patterns. Each use

case scenario has a situation transition diagram and the situation transition diagram should

contain the normal steps, exceptions and alternatives in the use case scenarios. For example, the

situation transition pattern of the use case scenario “Submit a Paper” is:

Figure 4.2 The situation transition diagram for uploading a file in MyReview

(5) Define the intention patterns based on situation transition relationships

Generally, each use case scenario has a corresponding intention pattern, which is defined

based on the situation transition relationships. For example, the intention pattern for the use case

scenario “Submit a paper” is as follows:

IP1(i) ⟺	SP1(initialOf(i)) ∧ SP6(finalOf(i)) ∧ {SP2(nextOf(initialOf(i), i)) ∨

 SP3(nextOf(initialOf(i), i))} ∧

 {∀s.SP2(s) ∧ SituationIn(s, i) ⟹ SP2(prevOf(s, i)) ∨ SP3(prevOf(s, i))} ∧

 {∀s.SP4(s) ∧ SituationIn(s, i) ⟹ SP2(prevOf(s, i)) ∨ SP5(prevOf(s, i))} ∧

 {∀s.SP5(s) ∧ SituationIn(s, i) ⟹ SP4(prevOf(s, i)) ∨ SP5(prevOf(s, i))} ∧

www.manaraa.com

47

 SP5(prevOf(final(i), i)).

As shown in the above example, an intention pattern is defined as a predicate and

specified using an axiom. After defining intention patterns for all the use case scenarios, the

initial domain knowledge base is constructed, which contains predefined desires, actions, objects,

contexts, sitution patterns, intention patterns and other predicates and functions.

4.2 Desire Inference and New Intention Detection

The SiSL domain knowledge base introduced above will be used as the basis of desire

inference and new intention detection, which will be applied for driving software evolutions. A

proper mathematical method, e.g., CRF, should be designed to enable the computation of optimal

results in the process of desire inference and new intention detection.

Figure 4.3 Intention Monitoring Based on SiSL-Domain Knowledge Base

As the precondition for new intention detection, desire inference is to infer agent’s desire

at each observation time point. According to the axioms introduced in the previous chapter, it

should be possible to infer agent’s desires based on his/her actions and current context values.

Intuitively, HMM is a feasible method because it is used to predict hidden states (desire) from

observable variables (actions and context values), and it is also considered capable of determining

human mental states from human actions [20]. In fact, I initially started with HMM and

www.manaraa.com

48

eventually chose a similar method, CRF, which is now considered as a better fit for our

methodology. More detailed comparison between these two methods will be introduced in a later

section 4.3. But before delving into the depth of mathematical model selection, it is necessary to

design the data first.

To accurately infer agent’s desires, I propose to observe the following states within the

observation capability:

1) Agent’s actions within the system domain, especially operations on the system

interface;

2) Those contexts whose values may influence agent’s actions;

3) Those contexts whose values can be changed by agent’s actions;

4) Those contexts whose values can indicate whether agent’s desire is satisfied or not;

5) Other context values which may not be considered as of any significance, but can

be easily captured. The motivation to include these data is to construct raw data for future

analytics, since the data may become valuable and relevant at some point.

After determining the contents to observe, I further suggest the instants at which an

observation should be made:

1) Action trigger: each time when the agent performs an action;

2) Context-value change trigger: each time when there is a change of the context

value being monitored;

The above principles to determine observation contents and observation frequency are

given as general guidelines, as each individual system may have its own characteristics and

limitations, and shall be carefully handled in a case-by-case basis. However, even for the same

system/domain, different observation setup may capture different sets of raw data, which may

www.manaraa.com

49

lead to different inference results. In order to get most out of our methodology, it is recommended

to experiment with different data collection mechanisms and methods, and select the one with the

best performance.

After setting up the monitoring mechanism, now I introduce the principle of desire

inference and new intention detection, as well as related concepts as follows (A step-by-step

methodology is given in section 4.3):

1) Observation: An observation is the observed status of the system domain at a time

point, including a set of actions and context values that are time-stamped. Desire inference and

new intention detection will be performed based on observations. Based on the observation

contents and frequency discussed above, a number of applicable and necessary sensors should be

deployed in the system to capture agent’s actions and relevant context values. Some actions and

context values cannot or will not be captured due to observation capability or non-necessity,

hence an observation may only contain only a part of the status of the domain.

2) Desire Inference: In desire inference, the inference model takes a sequence of

observations as the input and outputs the agent’s desire at each observation time point. As I

mentioned at the beginning of this chapter, a mathematical inference model is used in this process.

Feasible candidates can be HMM, CRF, etc.

3) Intention Inference: After the agent’s desire is inferred for each observation, the

intention for achieving a certain desire can be obtained by connecting the situations with the same

desire into a sequence that is destined to reach a goal state. The underlying rationale is because of

our definition of intention in section 3.4.

4) New intention detection: A new intention is a situation-sequence pattern which has

not been predefined in the domain knowledge base, i.e., an agent’s new behavior sequence pattern

www.manaraa.com

50

for achieving a desire. I believe that theoretically a new intention will arise in two cases: either the

agent has a new desire, or the agent has a new strategy for achieving a predefined desire. In

practice, new intentions will also be detected when the agent cannot properly perform operations

due to system flaws, which may cause their divergent behaviors. All of these cases are useful for

system evolution, because they can imply agent’s new requirements or system drawbacks.

Therefore, the ultimate goal of our methodology can be reached, that is to detect agent’s new

intentions for driving system evolution.

4.3 Using the CRF Method for Desire Inference and New Intention Detection

The Conditional Random Fields (CRF) method is applied in our research to build the

computational model for desire inference and new intention detection. More specifically, I use

linear-chain CRF (refer to section 2.3). Compared with HMM, linear-chain CRF has more

advantages on labeling sequential data and is supposed to be more suitable for our research due

to the following theoretical reasons:

1) According to Axiom I (see section 3.6), the agent’s actions are usually determined

by their current desire and current context values. Such determinative relation can be reflected in

a CRF model through defining feature functions that encode the known relations between the

attributes of the current observation (most likely context values) and the current desire. However,

in HMM, Axiom I cannot be well reflected because the current action is only determined by the

current desire according to the state-observation emission relations [20].

2) According to Axiom II (see section 3.6), some context value in a later observation

may depend on context values and an agent’s actions in a former observation. In CRF, such

relations can be encoded in some feature functions to better infer the current desire. However, in

www.manaraa.com

51

HMM, the relations between consecutive observations cannot be reflected because the

observations are supposed to be independent (output independent assumption [20]);

3) According to Axiom III (see section 3.6), the satisfaction of a desire depends on

current context values. As an agent usually moves on to fulfill a new desire when their current

desire is just satisfied, desire transitions also depend on current context values. Such desire

satisfaction determinism and desire transition principle can also be reflected in a CRF model

using feature functions that encode the known relations among the attributes of the previous

observation, the previous desire and the current desire. In HMM, according to the Stationarity

Assumption [20], the desire transition probabilities are stationary regardless of the current

context values, so the desire transition principle cannot be well represented.

Table 4.1 Comparison Between HMM and CRF for Desire Inference

 HMM Linear-CRF

Axiom I
Not supported because of state-
observation emission relations

Supported by defining feature
functions to reflect Action
Determinisms

Axiom II
Not supported because of Output
Independent Assumption

Supported by defining feature
functions to reflect relations between
consecutive observations

Axiom III
Not supported because of
Stationarity Assumption

Supported by defining feature
functions to reflect Desire Transition
based on context values

Assumption 2
Supported because of Markov
Property

Supported because of linear property

Based on the above reasons (also shown in Table 4.1), linear-CRF is chosen as the

mathematical foundation for our methodology of desire inference and new intention detection.

The general format of feature functions in the linear-chain CRF model in this thesis is formulated

www.manaraa.com

52

as fn(O, i, di, di-1), in which:

 O is a sequence of observations;

 i is the ordinal number of current observation in O;

 di is the inferred desire for the ith observation in O;

 di-1 is the inferred desire for the (i-1)th observation in O;

 The output is 1 when certain relations specified by the function are satisfied

among O, di and di-1, otherwise the output is 0.

The fundamental task of desire inference using CRF is to find the desire sequence D*

with the largest labeling score (highest probability), and use D* as the inference result for the

input observation sequence. Technically this task is very similar to the one that formula (2) (in

section 2.3) aims at, which is to predict word labels for a sentence. So I can modify formula (2)

by replacing its parameters with our own, and have formula (3) as the core mathematical model

for desire inference for observation sequence O = <o1, …, on>:

 ∗ ∗, … , ∗ argmax
∑ ∑ , , ,

∑ ∑ ∑ , , ,
 (3)

 λn is the weight associated with fn.

Figure 4.4 Methodology for Desire Inference and New Intention Detection.

www.manaraa.com

53

The complete process of applying our methodology to detect new intentions for software

evolution is depicted in Figure 4.4.

The detailed description of each step’s task is introduced as below:

Step 1: Constructing the CRF model. To achieve the two goals in our study: (1)

accurately infer the agent’s desires predefined in the domain knowledge base; (2) detect the

agent’s new or unexpected intentions, a linear-chain CRF model that encodes users’ known

behavior patterns for achieving desires should be built as the metrics for outlier detection [31]. I

propose to use supervised learning [51] to train the CRF model.

Step 1.1: Training Data Collection: The input training data consists of a set of sequences

of observation, and each of the sequence shall follow the form of <o1
*, d1

*>, <o2
*, d2

*>, …, <om
*,

dm
*>, in which each observation oi

* is labeled with a desire di
*. Since the CRF model is used as a

standard reference model to infer desires, it must be built upon the existing domain knowledge,

including known or predefined desires, behavior patterns, etc. To make it happen, the observation

sequence <o1
*, o2

*, …, om
*> in our training data shall be collected from observing user behaviors

that are expected to conform to the system design, e.g., existing use case scenarios and sequential

diagrams, etc., and the desires associated with each observation <d1
*, d2

*, …, dm
*> shall be

accurately reported by users or manually labeled by domain experts.

Step 1.2: Defining Feature Functions: Based on domain experts’ knowledge, feature

functions can be defined to reflect the relations between observations and desires. If using

existing tools, such as CRF++ [52], Flex-CRF [53], etc., we need to design feature templates

which specify the form of feature functions (will be introduced in section 5.4 with examples.)

Step 1.3: Training: With the training data prepared in Step 1.1, and the feature functions

designed in Step 1.2, we can start training the CRF model. Existing tools are available for

www.manaraa.com

54

building the CRF model, each with its own technical merits. Alternatively, people can design and

write their own algorithm based on their own preference.

The main task in this step is to get the CRF model constructed and ready for upcoming

inference work. To get the best inference result, it is recommended to iterate the steps from 1.1 to

1.3, and to use different training data sets with different feature functions configured for training,

so that a relatively-optimal model can be acquired.

Step 2: Data Collection and Pre-processing: Observe agent (real user)’s actions and

relevant context values when they operate on the system, and generate observation sequences

<o11, …, o1n>, <o11, …, o1m>, …;

Step 3: Desire Inference: Input the observation sequences prepared in Step 2 into the

CRF model acquired in Step 1, and infer the agent’s desire at each observation time point.

Step 4: New Intention Detection: New Intention Detection: As introduced in section 4.2,

a new intention is a situation-sequence pattern which has not been predefined in the domain

knowledge base. Considering the various causes of new intentions, and for the purpose of system

improvement, I propose three methods for detecting new intentions based on the results of desire

inference:

 Method I: Divergent behavior analysis. Detect uses’ divergent behaviors

through desires inferred with low confidence (probability). Divergent behaviors usually occur

when a user doesn’t follow an expected way to operate the system (a predefined intention),

which may indicate their dissatisfaction on the system or new desires. For example, on a

ticketing system, a user might think the process is too tedious so he tried different ways to skip

some steps or started over to find if there is any speedy entry. His behaviors may appear irregular

and cannot be well interpreted by the CRF model, which will result in low confidence when

www.manaraa.com

55

labeling desires. Therefore, these divergent behaviors can be singled out for analyzing users’ new

requirements.

 Method II: Desire transition analysis. Obtain a new intention based on desire

transitions. If two desires often appear consecutively, a new intention can be considered to make

the desire transitions more smoothly and efficiently. Accordingly, the system can be modified to

simplify users’ operations. For example, again on the ticketing system, if users often move on to

select a seat right after finishing buying a ticket, a link that directs the users to the seat selection

page can be added on the confirmation page of “buying a ticket”. This kind of desire transitions

can be obtained based on the results of desire inference with high confidence level.

 Method III: Erroneous behavior analysis. Find new desires and system

drawbacks from users’ erroneous behaviors. When users have new desires which are not

supported by the current system, their behaviors may trigger error reports. For example, on the

same ticketing system, if a user tries to input a phone number in a format that is not supported by

the system, an error report will be generated. If such error report occurs time and time again, it

may indicate many users actually want to input their phone number in other non-supported

format, which can become a new intention. Additionally, some of the detected users’ erroneous

behaviors can be false positive, which means these behaviors are actually normal, while some

system drawbacks/defects making them look “erroneous”. So these behaviors with related error

reports can be a good starting point to detect system drawbacks and defects, and to further

improve the system.

4.4 System Evolution Process Based on New Intention Detection

The detected potentially new intentions and system drawbacks will be further analyzed

www.manaraa.com

56

by domain experts to determine whether they are indeed new intentions or system drawbacks.

This step cannot be done automatically, and must be manually performed by domain experts. The

system drawbacks may not be too difficult to identify, while the new intentions are usually

implicit and hard to decide. Domain experts can make some assumptions of the new intentions

and then verify them based on their expertise, or they can directly inquire the users for evaluation

if possible. After this validation and verification process is done, the current system shall be

redesigned to satisfy users’ new intentions, or be corrected to overcome those revealed

drawbacks/defects. The complete process of system evolution based on new intention detection

using the CRF method is shown in Figure 4.5.

In summary, our methodology is supposed to be more efficient and effective for system

evolution than traditional approaches due to:

Figure 4.5 System evolution driven by new intention detection using CRF.

www.manaraa.com

57

1) Our methodology is based on observations of users’ real-time behaviors, while

traditional approaches often depend on users’ delayed feedbacks, system defect reports or system

performance logs, etc. [15], [13], [54]. Therefore, our methodology can shorten the time to get

useful information for analyzing new requirements;

2) Observations of actions and relevant context values contain richer and more

meaningful information for new requirements elicitation because they are the direct reflection of

users’ internal mental states that occur during their operation on the system. On the contrary,

users’ feedback is usually not as accurate yet implicit, while other resources such as system

defect reports and system performance logs cannot reflect users’ new requirements on the system

effectively;

3) The application of the mathematical method linear-chain CRF enables accurate

and rapid inference of users’ desires, making our methodology more efficient than traditional

manual analysis. The three methods proposed in section 4.3 for new intention detection can be

automated as well. Hence, they can obtain useful information quickly and speed up the process

of new requirements elicitation;

4) The new requirements discovered in our methodology are directly elicited from

user’s unexpected behaviors in the operational environment, thus the system can be pertinently

improved to adapt to those user behaviors. Therefore, the system evolution path is supposed to

be more appropriate and effective.

www.manaraa.com

58

CHAPTER 5. EXPERIMENT ON A RESEARCH LIBRARY SYSTEM

As stated in the previous chapter, I believe our methodology is beneficial for efficiently

and effectively discovering new requirements and shortening the software evolution cycle. In this

chapter, I present an exploratory experiment on a dynamic web-based system to demonstrate and

validate our methodology. First of all, I made the following hypotheses before conducting the

experiment:

(1) Based on observations of user’s actions and relevant context values, it is possible

to accurately infer user’s desires using a CRF model. I expect the inference accuracy will be 90%

or higher and it should be higher than that by using HMM;

(2) It is possible to detect some new intentions based on the results of desire inference

using the three methods introduced in section 4.3;

(3) New user requirements or system drawbacks can be revealed based on the

detected new intentions; Rapid system evolution can be achieved based on the revealed new user

requirements or system drawbacks.

To validate the above hypotheses, our experiment can be divided into two sub-

experiments and one case study as follows:

(1) First-round experiment: An experiment to validate that high desire inference

accuracy can be achieved by using CRF.

(2) New-intention-detection case study: A case study to demonstrate our methodology

for new intention detection and new requirements elicitation;

(3) Second-round experiment: An experiment to validate the system improvement

between two versions of systems.

www.manaraa.com

59

5.1 Experiment Platform – the CoRE System

The experimental system is an online library system, called Cooperative Research

Environment (CoRE). It was modified based on an open-source web application, MyReview

[55], for managing the process of paper submission and paper review. The original system has

served many academic conferences, and our modification still keeps its basic functionalities.

Therefore, our experiment is expected to emulate users’ operations on a real-world system.

Another reason for choosing a web-based system to conduct our experiment is that it is easier to

get participants’ self-reported desires which are used to validate our methodology.

User

Upload/Edit
a Paper

Submit/Edit
a Comment

View/Edit
a Paper Info

Filter Papers

View/Edit
Profile

Report Desire

Record Actions
and Context Values

<<include>>

Record Desire

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Log in

<<include>>

Figure 5.1 The use case diagram of the CoRE system.

CoRE has been designed and developed as a research community for people to share their

thoughts and views on academic papers. Users can upload research papers, submit comments for

papers, and view papers’ information, etc. Figure 5.1 is the use case diagram of CoRE.

www.manaraa.com

60

Figure 5.2 Interface of the page for uploading a paper in CoRE Version I.

To monitor users’ behaviors and capture related context values, an embedded program is

deployed in CoRE as a sensor. Users’ operations, paper and comment submissions, and the

contents on the web pages will be recorded and stored in the database. During each experiment

session, users need to report/select their current desires from a dropdown list containing a set of

expected desires. Examples of desire options are “Upload a paper”, “Submit a comment”, “View

a paper information”, and “Not in the list”, etc. The users can also correct their desire selections

in the post-session questionnaire in case that they forgot to report desires or reported an incorrect

www.manaraa.com

61

one during the experiment. Figure 5.2 shows the interface of the page for uploading a paper in

the CoRE system, on which we can see there is dropdown menu in the right-side pane for users

to report their desires during the experiment.

5.2 Procedure of an IRB Approved Experiment

Due to the nature of our experiment involving human subjects, and to stay complied with

federal regulations set forth by the Department of Health and Human Services and the Food and

Drug Administration, all of the principle investigators in our experiment have completed the

National Institutes of Health (NIH) Web-based training course “Protecting Human Research

Participants”, and they have also closely worked with our local Institutional Review Board (IRB)

for approval for conducting our experiment, which has been granted before our experiment was

implemented.

More than 120 people participated in our experiment. Each participant was required to

study the user manual, and had a chance to do some test operations on the system to get a

preliminary understanding about it. Participants’ actions, self-reported desires, and relevant

context values are recorded as the experiment raw data. In order to show our methodology’s

ability to enable and speed up the evolution process of the CoRE system, the experiment has

been done for two rounds, which is to emulate one software evolution cycle. The whole

experiment procedure is described as below:

1) Deploy the initial system: CoRE Version I;

2) Run experiment round 1 for 30 days: invite participants, collect data records of

participants’ actions, desires and context values;

www.manaraa.com

62

3) Shutdown CoRE Version I. Apply our proposed methodology on the raw data

captured in round 1, analyze and elicit users’ new requirements. Revise the system accordingly;

4) Deploy the enhanced system: CoRE Version II;

5) Run experiment round 2 for 30 days: invite new participants, collect data records

of participants’ actions, desires and context values;

6) Shutdown CoRE Version II. Apply our proposed methodology on the raw data

captured in round 2, analyze and elicit users’ new requirements.

7) Evaluate the effectiveness of our methodology on the evolution of CoRE from

Version I to II.

During the experiment in each round, participants can enter CoRE for multiple times, and

each time is recorded as one session. In each session, participants shall follow the procedure as

follows:

1) Visit experiment website and log into experiment;

2) Answer pre-session questionnaire about their familiarity with the system;

3) Start a session: Log into CoRE and start operating on the system. Participants are

free to carry out any operations, but need to report their desires on each webpage through

choosing a predefined desire in a dropdown list.

4) End a session: Participants can end a session at any time they prefer. Then they

will be directed to a post-session questionnaire, where they can give some feedback of the

system, and also have a chance to correct their reported desires if necessary.

Observation in our experiment is action triggered. During each experiment session, the

embedded monitoring program in the system will take a snapshot of the participant’s action and

some system context information when he/she performs an operation on the system.

www.manaraa.com

63

Each raw data record has the following attributes, with an example shown in Table 5.1:

1) Time: the time point when the participant performs an operation;

2) Participant’s login ID;

3) Action: including mouse click on a button or a link, or selection on a dropdown

menu;

4) The current webpage where the action occurs;

5) Contents on the webpage (user’s submitted input, system’s responses to the user’s

action including exceptions and error messages);

6) Participant’s self-reported desire.

Table 5.1 Example Raw Data Record

Record Item Data

Time 2014-06-23 12:11:20

loginID User020

Action click(Btn_Login)

Page Page_Login

Content [Login ID]Test001 [Password]112233 [Message]Invalid password

Desire Filter Papers

5.3 Data Collection and Preprocessing

This step corresponds to Step 2 in our methodology (in section 4.3). In our experiment,

Step 2 and Step 1 in our methodology have been done reversely, because several domain experts

and system designers were also participants, and their own data records were mixed with others

and were later filtered out as training data for building the CRF model. For other application, if

www.manaraa.com

64

there is a good historical data source available that is suitable for training purposes, one can

certainly follow all steps of our methodology in the normal order.

There are 10,063 raw data records and 585 experiment sessions captured in the first

round of experiment, and 10,524 raw data records and 582 experiment sessions captured in the

second round. A raw data record contains all the attributes shown in Table 5.1. A record of an

experiment session is the data sequence that starts when the user logs into the experiment, and

ends when the user logs out.

As the accuracy of participants’ self-reported desires is critical for validating the results

of desire inference, those raw data records with inaccurate self-reported desires are not usable

and are considered as noise. To remove those noise, raw data records have to be checked and

filtered, noisy data in a unit of session will be removed based on the following principle:

(1) If most (>50%) of self-reported desires are “Not in the list”, which is the default

value in the desire selection dropdown list. I will assume that in this case the participant forgot to

report his desire at all or most of the time in the experiment;

(2) If the answer is “no” for the question “Did you select the desire every time when

you had a new desire?” in the post-session questionnaire;

(3) After filtering based on (1) and (2) is done, I had the rest of the data records

manually checked by domain experts and system designers, and evaluated in the perspective of

whether the participants’ self-reported desires were reasonable or not. Those obviously wrong

ones should and have been removed because they cannot be used to validate our desire inference

result. A case of example is that a participant might forget to report his desire (change) when he

accomplished his previous task and started a new one.

www.manaraa.com

65

After preprocessing and noise filtering, the final data set of the first-round experiment has

6880 data records and 369 experiment sessions, and the final data set of the second-round

experiment has 6931 data records and 361 experiment sessions.

5.4 Building the Standard CRF Model

According to Step 1 in section 4.3, a CRF model shall be built and used as measure

metrics to infer users’ desires and detect new intentions. The training data records for building

the CRF model shall be collected from the system designers’ and experienced users’ behaviors.

As I mentioned in 5.3, in our experiment, the training data records are actually mixed with

others. However, they have the following attributes and can be readily filtered out:

1) The records belong to system designers and participants whose behaviors were

conducted to achieve certain expected desires. By “expected”, it means those behaviors shall

conform to the CoRE use case scenarios, including normal cases, exceptions, and alternatives;

2) The training data set shall cover all of the expected desires;

3) The self-reported desires in records in the training data set shall be accurate.

After being processed from the raw data, a training data set was acquired for building the

CRF model. There are 2930 data records and 158 experiment sessions in the training data set of

the first-round experiment. A sample of these training data is given in Table 5.2.

Table 5.2 Sample Training Data

Observation Time Interval Desire

clickMenuAllPapers 30s ViewAllPapers

clickPaperInfos&PaperID m ViewAPaperInfo

clickFilter&FilterCategory 60s FilterPapers

www.manaraa.com

66

Each training data record has three elements: observation, time interval and desire.

 Observation: includes the action and context values which are captured

simultaneously. The format is action&contextvalues, e.g., in the observation

clickFilter&FilterCategory, clickFilter is an action and FilterCategory is a context value;

 Time interval: the time interval between two consecutive observations. A time

interval is calculated based on the time point in each data record. The partition of different time

intervals is given in Table 5.3.

Table 5.3 Partition of Time Intervals

Actual duration of the interval Time Interval

0 ~ 5s 5s

5s ~ 10s 10s

10s ~ 20s 20s

20s ~ 30s 30s

30s ~ 60s 60s

60s ~ 60mins m

>= 1 hour h

 Desire: user’s self-reported desire.

I use an open-source tool called CRF++ [52] to build our CRF model based on the

training data. According to Step 1.2 in 4.3, we need to design the feature functions for our CRF

model, and in CRF++, they can be automatically generated based on feature templates which

specify their formats. The feature templates used in our experiment are shown in Table 5.4, in

which each entry denotes one template.

www.manaraa.com

67

Table 5.4 Feature Templates

Unigram feature templates Bigram feature templates

U01:%x[0,0]

U02:%x[-1,0]/%x[0,0]

U03:%x[0,0]/%x[1,0]

U04:%x[-2,0]/%x[-1,0]/%x[0,0]

U05:%x[-1,0]/%x[0,0]/%x[1,0]

U06:%x[0,0]/%x[1,0]/%x[2,0]

B01:%x[0,1]

B02:%x[0,0]/%x[0,1]

B03:%x[-1,0]/%x[0,1]

B04:%x[-1,0]/%x[0,0]/%x[0,1]

In each template, special macros in the format of %x[row,col] will be used to specify a

token in the input data. row specifies the relative position from the current focusing token and col

specifies the absolute position of the column. The above feature templates were acquired after

experimenting with the data for the highest inference accuracy. Below are some brief

explanations of some key feature templates and why they are good for building the CRF model:

1) U01~U06: the unigram templates specify the relation between the observations

and the current desire. %x[-1,0], %x[0,0] and %x[1,0] represent the previous, the current and the

next observation respectively. An example feature function generated by U02: %x[-1, 0]/%x[0,

0] based on data records in Table 5.2 is:

, , ,

1
	
	

	 ViewAPaperInfo																							
clickPaperInfos&PaperID	
clickMenuAllPapers							

0 																																																	

The above feature function can be interpreted as: if the current observation On is click the

link “View Paper Infos” of a paper and its previous observation On-1 is click the menu option “All

www.manaraa.com

68

Papers”, the current desire dn is supposed to be View a paper’s information with a labeling

confidence w1 associated with f1.

Because of the nature of the domain of CoRE, it can make the inference results more

accurate by considering the neighboring observations when designing feature templates. For

example, there is a segment in the training data set shown in Table 5.5:

Table 5.5 Example Segment in the Training Data Set

Observation Time Interval Desire

clickLogin&LoginGood 30s EditProfile

clickMenuMyProfile 10s EditProfile

clickSubmit&ProfileUpdated 30s EditProfile

The observation clickLogin&LoginGood is labeled as EditProfile because the following

observations show that the user updates his profile. Another segment (Table 5.6) is:

Table 5.6 Example Segment in the Training Data Set

Observation Time Interval Desire

clickLogin&LoginGood 10s ViewProfile

clickMenuMyProfile 10s ViewProfile

clickMenuAllPapers 30s ViewAllPapers

Here the observation clickLogin&LoginGood is labeled as ViewProfile because the

following observations show that the user didn’t update his profile so he probably just viewed

the profile. This kind of relations between observations and desires shown in the above two

examples can be encoded into the CRF model based on template U06:%x[0,0]/%x[1,0]/%x[2,0],

which takes the current, next and after next observations into account for inferring the current

www.manaraa.com

69

desire.

2) B01~B04: the major difference between unigram templates and bigram templates

is that the latter ones consider the previous desire for inferring the current desire but the former

ones do not. These four bigram templates specify the relations among observations, time

intervals, current desire and previous desire. An example feature function generated by B02:

%x[0, 0]/%x[0, 1] based on data records in Table 5.2 is:

, , ,

1
					
	

	 ViewAPaperInfo																				
ViewAllPapers														 			

clickPaperInfos&PaperID	
m															

0 																																																	

The above feature function can be interpreted as: if the current observation On is click the

link View Paper Infos of a paper and the previous desire dn-1 is View all papers, the current desire

is supposed to be View a paper’s information which is not consistent with the previous desire

because the time interval between two observations is m (which is long).

Because of the nature of the domain of CoRE, it can make the inference results more

accurate by adding the factor of time intervals into feature templates. Table 5.7 shows two

example segments in the training data set (separated by dotted lines).

Table 5.7 Example Segment in the Training Data Set

Observation Time Interval Desire

clickMenuUploadPaper 10s UploadPaper

clickSubmit&NoFile m UploadPaper

…… … …

clickMenuUploadPaper 10s Test

clickSubmit&NoFile 30s Test

www.manaraa.com

70

The first segment in Table 5.7 shows that if the user’s desire is to Upload a paper, the

time he stays on the page Upload Paper will be long (more than 1 minute), and if the user just

wants to do some Test, the time interval is most likely short. This kind of relations among

observations, time intervals and desires can be encoded in the feature functions generated by

template B02, which takes the current observation and current time interval into account for

inferring the current desire.

For the similar reason, time gaps between observations are important to desire inference

as careless or unintentional errors are usually corrected shortly after they are made. An example

of this case is shown in Table 5.8:

Table 5.8 Example Segment in the Training Data Set

Observation Time Interval Desire

clickMenuMyPapers 10s UploadPaper

clickMenuUploadPaper 5s UploadPaper

clickSubmit&PaperInfoGood m UploadPaper

The above example shows that the participant’s desire was to Upload a paper, but he

clicked link My uploaded papers first by mistake and then clicked link Upload a paper in 5

seconds. The accidental erroneous operation will be still labeled correctly if considering the short

time interval between the current and the next operation. This kind of relations can be

represented in template B01, which encodes the relations among the current time interval,

previous desire and current desire. With the template B01 and data records in Table 5.8, a feature

function will be generated which labels consecutive observations with a same desire if the time

interval is short.

www.manaraa.com

71

In summary, each feature template shown in Table 5.4 has its own meaning in describing

certain property of the domain of CoRE. During the course of experiment, it took us several

iterations to fine-tune these feature templates so that the domain of CoRE could be properly

characterized and depicted.

Based on the prepared training file and template file, a CRF model can be built by

CRF++ and stored in a file. However, the feature functions and their associated weights are

encoded internally and unfortunately cannot be viewed.

5.5 Desire Inference using Hidden Markov Model

To validate our hypothesis on the advantage of using CRF for desire inference over

HMM, I conducted a HMM-based inference experiment as a comparison. The set of training data

and test data used to build HMM is same to that mentioned in the previous section. However, the

column “Time Interval” (in Table 5.2) is not used because only one class of visible states can be

used to build the HMM, so only data of observation have been used. More specifically, the

emission probability Matrix O (introduced below) in HMM specify the relations between

invisible states (desires) and one class of visible states (observations), and the two types of

probability matrixes, 	and T, can only describe desires.

Jahmm [56], a Java implementation of HMM related algorithms, is adopted as the

computation tool. Because the Baum-Welch algorithm applied in Jahmm for parameter

estimation can find a local minimum of its optimum function only, a critical step in building a

HMM model is providing an initial guess of values in the following three basic probability

matrixes:

(1) 	: initial probability distributions of desires. E.g., P 	(d1) represents the

www.manaraa.com

72

probability of user’s desire is d1 at time 0 (the beginning of an observation sequence);

(2) T: matrix of desire transition probability distributions. PT(di, dj) represents the

conditional probability of user’s desire is dj at time t+1 given it is di at time t, for any t ≥ 0;

(3) O: matrix of desire-observation emission probability distributions. PO(di, oj)

represents the conditional probability of the observation is oj given the desire is di, at any time

point.

Based on the domain of CoRE and the training data, the best way that I found through

multiple trials to compute the estimation of the three kinds of probabilities is as the following:

 P 	(desire1) = num(desire1_seq)/num(all_seq), in which num(desire1_seq) is the

number of sequences in which the desire in the first data record is desire1 and num(all_seq) is the

number of all sequences;

 PT(desire1, desire2) = trans_num(desire1, desire2) / trans_num(desire1, anydesire),

in which trans_num(desire1, desire2) is the number of transitions from desire1 to desire2 for all

consecutive data records and trans_num(desire1, anydesire) is the number of transitions from

desire1 to any desire;

 PO(desire1, observation1) = emis_num(desire1, observation1) / emis_num(desire1,

anyObservation), in which emis_num(desire1, observation1) is the number of emissions from

desire1 to observation1 in all data records and emis_num(desire1, anyObservation) is the number

of emissions from desire1 to any observation.

Then we can train our HMM based on the initial estimation of the model in Jahmm

iteratively. The model is more accurate when the number of iterations is higher. The outcome

trained HMM will be used to perform desire inference on the test data.

www.manaraa.com

73

5.6 Inference Result Analysis in the First-Round Experiment

This step corresponds to Step 3 in our methodology (in section 4.3). Separated from

training data, the rest data records are used as test data in the first-round experiment, containing

3,950 data records and 211 experiment sessions. The format of the test data is the same as that of

the training data. Based on the built CRF model, desire inference can be performed on the test

data using CRF++. Table 5.9 shows a sample of the results of desire inference.

Table 5.9 Format of Desire Inference Result Using CRF++

Test Data
Inferred Desire/
Inference Probability

Observation Time Interval Desire

…… …… ……
……
0.075707

clickMenuAllPapers 30s ViewAllPapers ViewAllPapers/0.925086

clickLogin&LoginGood 10s ViewAllPapers ViewAllPapers/0.957425

clickMenuAllPapers 10s ViewAllPapers ViewAllPapers/0.982439

…… …… …… ……

Each inference result contains the inferred desire and the inference probability.

Meanwhile, the overall inference probability of the output desire sequence for each experiment

session is also given, e.g., in Table 5.9, # 0.075707. By examining the inference result, I found

that the overall inference probability of the whole desire sequence has a large correlation to the

length of the sequence, while the probability of each single output desire can better reflect the

inference accuracy. I also found that using the same training data and test data but different

feature templates, the inference accuracy will be different. Table 5.10 lists the inference results of

using HMM and CRF models with different types of feature templates.

www.manaraa.com

74

Table 5.10 Inference Accuracy of Different Templates

 Template 1
U01, B01~B04

Template 2
U01~U06

Template 3
U01~U06, B01~B04

Jahmm

%Mislabelinga 11.2405%
(444/3950)

14.0759%
(556/3950)

8.9367%
(353/3950)

26.6329%
(1052/3950)

Avg-P(Des-Infer)b 0.808979 0.749702 0.847904 NA

Avg-P(Seq-Infer)c 0.234812 0.0971787 0.286588 NA

aRatio of mislabeled observations to all observations
bAverage inference probability of single observations
cAverage inference probability of experiment sessions

The results in Table 5.10 show that overall CRF has far high inference accuracy than

HMM, and it gives better inference results (more accurate) when more meaningful feature

templates are used and the domain is described more thoroughly.

 To identify users’ divergent behaviors that often reflect their new intentions (introduced

in section 4.3), it is necessary to choose data records which have high probability to indicate such

behaviors in an effective and efficient way. In our expectation, observation records with users’

divergent behaviors will probably be labeled with desires which are not consistent with their real

desires because the CRF model cannot explain these behaviors very well. However, in practice,

since users do not report their desires, it is not possible to detect users’ divergent behaviors

through comparing the inferred desires with the self-reported ones. One alternative way is to

look into the output desires with low inference probability, since there may be some relations

between inference probability and inference accuracy. Based on our analysis on data records, I

found that basically there was an inverse relationship between inference probability and

mislabeling probability, i.e., an observation is more likely to be mislabeled if its inference

probability is lower. As shown in Table 5.11, the mislabeling rate (%Mislabeling) is higher for

www.manaraa.com

75

those observations with lower inference probability. In practice, since we cannot study all data

records, we should focus on analyzing observations with low inference probability first.

Another two relations that are useful for further improving the efficiency to filter data

records for analyzing divergent behaviors are introduced as following:

1) Consecutively low inference probabilities indicate that mislabeling is more likely

occurring (shown in Table 5.12). For example, if the inference probabilities of three consecutive

observations are all 0.45, according to Table 5.12, the probability of all of them are mislabeled is

about 44.8%, which is higher than the mislabeling rate for a single observation in the rage [0.4,

0.5) shown in Table 5.11. In practice, if two or more consecutive observations are all inferred

with low inference probabilities, they should be more likely mislabeled and should be chosen for

analyzing.

2) The sharp changes of the inference probability between that of an observation and

its neighboring (previous and next) observations indicate it is probably mislabeled (shown in

Table 5.13). For example, if the inference probabilities of three consecutive observations are

0.85, 0.4, 0.85, respectively, the probability of the middle one is mislabeled is 59.64%, which is

higher than the mislabeling rate for a single observation in rage [0.4, 0.5) in Table 5.11.

The above two relations are used as the principle for filtering data in our study, i.e., we

try to find sequences of observations with low inference probability or single observations which

has large probability change with its neighbors. Based on the data records characters in our

experiment, our filtering mechanism tries to find the following data records for study:

1) Two or more consecutive observations with inference probabilities less than 0.6;

2) One observation whose inference probability is at least 0.2 less than its previous

and next observations.

www.manaraa.com

76

Table 5.11 Mislabeling Rate of Observations in Different Inference Probability Ranges

Inference
Probability

Rangea
< 0.1 0.1 ~ 0.2 0.2 ~ 0.3 0.3 ~ 0.4 0.4 ~ 0.5 0.5 ~ 0.6 0.6 ~ 0.7 0.7 ~ 0.8 0.8 ~ 0.9 0.9 ~ 1

%Occurrenceb 0.10% 1.29% 1.82% 3.22% 3.92% 4.15% 5.19% 6.43% 10.15% 63.72%

%Mislabelingc 75% 60.78% 45.83% 44.09% 41.29% 27.44% 19.02% 12.60% 7.48% 0.79%

aThe range of the inference probability for an observation
bThe ratio of the number of observations with inference probability in the range to the total number of observations
bThe ratio of the number of mislabeled observations to the total number of observations with inference probability in
this range.

Table 5.12 Mislabeling Rate of Consecutive Observations in Different Probability Ranges

Common Range
of Inf-

Probabilities
of Consecutive
Observationsa

Two Consecutive Observations Three Consecutive Observations

< 0.2 < 0.3 < 0.4 < 0.5 < 0.6 < 0.2 < 0.3 < 0.4 < 0.5 < 0.6

%Occurrenceb 0.46% 1.19% 2.68% 4.92% 7.94% 0.25% 0.66% 1.44% 2.86% 4.83%

%All-
Mislabelingc

55% 48.08% 47.01% 42.79% 36.02% 54.55% 48.28% 50.79% 44.8% 35.55%

aThe common range of the inference probabilities of two or three consecutive observations
bThe ratio of the number of consecutive observation pairs with inference probabilities in the range to the total
number of consecutive observation pairs
cThe ratio of the number of consecutive observation pairs which are all mislabeled to the total number of
consecutive observation pairs with inference probabilities in the range

Table 5.13 Mislabeling Rate of Observations in Different Probability Change Ranges

Range of Probability
Changea

> 0 > 0.1 > 0.2 > 0.3 > 0.4 > 0.5 > 0.6 > 0.7

%Occurrenceb 18.42% 4.99% 2.45% 1. 31% 0.62% 0.16% 0.068% 0

%Mislabelingc 17.52% 30.73% 37.38% 42.11% 59.26% 57.14% 66.67% NA

aThe common range of inference probability change between an observation and its previous and next observations
bThe ratio of the number of observations with neighboring inference probability changes in the range to the total
number of observation
bThe ratio of the number of observations which are mislabeled to the total number of observations with inference
probability change in the range

www.manaraa.com

77

The threshold of the values in the above two methods can be determined by the number

of total records in practice. For example, people can start with 0.2 in the first method and 0.6 in

the second method, and increase the first value or decrease the second value until enough records

have been found.

5.7 New-Intention-Detection Case Study

This step corresponds to Step 4 in our methodology (in section 4.3) and system evolution

process (in section 4.4). Three new intention detection methods have been applied and

demonstrated with illustrative examples based on the first-round experiment results which are

shown in below:

1) New Intention Detection Method I

As introduced in the previous section, I focus on studying consecutive observations with

low inference probability (<0.6), or single observations with large inference probability change

(> 0.2). These observations are more likely mislabeled, i.e., the CRF model cannot accurately

explain these behaviors so they are probably divergent behaviors. Here I give some examples to

demonstrate how to detect users’ divergent behaviors and use them for system improvement.

a. New_Intention 1: some users often click button hide the above selection form to

hide the selection form (see Figure 5.3) immediately after entering the page All Papers.

As shown in Table 5.12, the observation clickHideSelection is labelled with

ViewAllPapers as the inferred desire with a low probability 0.401886, and its previous

observation is also labelled with a low probability desire, while its following observation is

labelled with a very high probability desire. In this case, this particular observation (hiding the

selection form) can be easily singled out for analysis. To understand such phenomena, I made a

www.manaraa.com

78

wild guess that the user might think the selection form is cumbersome when he tries to view the

information of papers because it is too big and takes up too much screen space.

Two options have been considered to solve this problem: (1) make the selection form

initially hidden on the page All Papers (users can make it visible by clicking the link show the

selection form); (2) show a simplified selection form initially (users can make it complete by

clicking the link expand the selection form). To assess which option is better, I did a statistical

analysis of users’ behaviors after entering the page All Papers. There are four kinds of behaviors:

a) hide the selection form to view the information of a paper; b) directly view the information of

a paper; c) filter papers; d) others (exclude users’ aimless behaviors). The number of occurrences

of each behavior is: 49, 52, 67, 19, respectively. Because the frequency of behavior c) is highest,

it is better to keep the selection form while shrink it to a small size. Therefore, I proposed a

modification to the system, that is to simplify the selection form with most frequently search

items (key words in the title and publication type) and add a new link expand selection form

while initially hide the selection form (see Figure 5.3).

Table 5.14 Example Segment in the Desire Inference Results

Observation Time Interval Inference Results

clickMenuAllPapers 10s ViewAllPapers/0.510326

clickHideSelection 60s ViewAllPapers/0.401886

clickPaperInfos&PaperID 60s ViewAPaperInfo/0.986832

clickPaperInfos&PaperID 30s ViewAPaperInfo/0.995394

b. System_Drawback 1: As shown in Table 5.15, there are two consecutive error

messages corresponding to records in row No. 2 and 3. The first error is ShortLimitation and the

second one is NoCategory. Such case is unexpected because the user should have selected the

www.manaraa.com

79

category when the first error occurs, otherwise the first error message will also contain

NoCategory. After looking into the original system design, I learnt that the second error occurred

because the system cleared users’ previous category selection when the first error occurred,

however, the user didn’t notice such change. The corresponding modification on the system is to

let it always keep users’ category selection when they submit a comment.

Table 5.15 Example Segment in the Desire Inference Results

Observation Time Interval Inference Results

clickSubmitComment&PaperID 60s SubmitComment/0.883791

clickSubmitComment&ShortLimitation m SubmitComment/0.844754

clickSubmitComment&NoCategory 30s SubmitComment/0.628784

clickSubmitComment&CommentGood 10s SubmitComment/0.894764

Other examples of users’ divergent behaviors detected in our experiment are:

c. System_Drawback 2: Click the button Submit twice or more on the page

submit/edit a comment: The reason why users did this might be because the message for

successful submission is not clear. Our proposed modification is to use bright color and bold font

to make the message more visible (see Figure 5.4);

d. System_Drawback 3: Users consecutively input wrong passwords on the login

page and the wrong passwords contain a space. One possible reason is that the user may copy the

password with an extra space from somewhere. A possible modification is to give a hint that the

password shall contain no space when such case happens.

2) New Intention Detection Method II

Another way to find users’ potential new intentions is to study the desire transitions. The

following Table 5.16 shows some examples of desire transitions in the first-round experiment:

www.manaraa.com

80

Table 5.16 Desire Transitions in the First-Round Experiment

Desire Transition Occurrences Ratio

UploadPaper ViewMyPaperInfoa / UploadPaperAnyb 23/50 46%c

SubmitComment ViewMyCommentInfo / SubmitCommentAny 35/52 67.31%

ViewAPaperInfo DownloadPaper / AnyDownloadPaper 98/160 61.25%

aThe desire transition from “UploadPaper” to “ViewMyPaperInfo”
bThe desire transition from “UploadPaper” to any other desire
cThe ratio of desire transition a to desire transition b

New intentions can be defined for those frequently occurred desire transitions to make

them smoother and more efficient, and on the system can be accordingly modified to simplify

users’ operations. For example, for desire transitions UploadPaper ViewMyPaperInfo

(New_Intention 2) and SubmitComment ViewMyCommentInfo (New_Intention 3), new

functions can be added to the system to display a link of the submitted paper/comment on the

submission page right after the paper/comment is successfully submitted (see Figure 5.4); and for

the desire transition ViewAPaperInfo DownloadPaper (New_Intention 4), a link can be added

on the page of paper information to allow users directly download the paper (see Figure 5.5).

3) New Intention Detection Method III

If an erroneous behavior appears in the observation set for many times (e.g., >= 5 times),

it can be viewed as a common error. A special case is users’ aimless behaviors that may trigger

errors that are not useful for analyzing users’ desires. In this case, CRF is useful to exclude the

noisy “error” data, and the aimless behaviors are usually labelled with desire “test” by the CRF

model which encodes many “test” behaviors that will be ignored for new intention detection.

After removing the noisy data, the occurrences of users’ erroneous behaviors can be easily

counted using simple mathematical methods.

www.manaraa.com

81

Some examples of common users’ erroneous behaviors detected in the first-round

examples are:

a. New_Intention 5: No file was uploaded when editing the information of a paper.

Such erroneous behavior occurs probably because users do not want to upload a file when

editing the paper information, which can be considered as a new intention. The corresponding

system modification is to allow users to edit the paper information without uploading a file;

b. System_Drawback 4: Number of words in comment details is fewer than the

minimum limit when submitting a comment. Users often consecutively encountered this error

because they probably have no idea how many words they have typed in. One possible

improvement can be that the system shall always display the number of words allowed left;

c. New_Intention 6: Chinese/Japanese comments are not accepted even though they

contain enough words, which dues to the fact that the word count function in the system can only

count spaces in a comment, which is not suitable for comments written in other languages

containing no spaces. One corresponding improvement could be that the system shall be

enhanced to support non-English comments;

d. System_Drawback 5: Missing key information (normally DOI, keywords) when

uploading a paper. One corresponding improvement could be that the system should give clear

tips on the uploading page to tell users what information is mandatory before uploading a paper;

e. New_Intention 7: Non-PDF files are uploaded but not accepted by the system.

One corresponding improvement could be that the system is enhanced to support non-PDF files.

Based on the new intentions and system drawbacks I discovered, I made corresponding

modification on the system, and the current CoRE system now has evolved to its next version –

CoRE Verision II.

www.manaraa.com

82

Figure 5.3 Selection forms (upper: selection form in CoRE Version I, lower: selection form in
CoRE Version II).

Figure 5.4 The new link for viewing the submitted comment and for viewing the uploaded paper.

Figure 5.5 The new link for downloading a paper.

5.8 Validation of System Improvement in the Second-Round Experiment

To demonstrate and validate the potential improvement of the system, a second round

experiment was done on the evolved system – Core Version II, by following the exactly the same

process as what I have done in the first round, which means that I strictly followed Step 1 to Step

www.manaraa.com

83

4 in section 4.3 for one more iteration. The only difference was that I recruited new participants

in the second round to make the comparison between two versions fair and even. In this section,

I will not focus on the technical execution of our methodology steps due to the paragraph limit.

Instead, I will mainly focus on evaluating the improvement of CoRE version II over its

predecessor.

Similar to the data analysis in the first round, a CRF model is built using 2,984 training

data records, and it is used for desire inference on a test data set with 3,947 records. The results

of desire inference in two rounds are shown in Table 5.17:

Table 5.17 Overall Desire Inference Accuracy

 %Mislabeling Avg-P(Des-Infer) Avg-P(Seq-Infer)

Second Round 3.9524% (156/3947) 0.905067 0.314128

First Round 8.9114% (352/3950) 0.848429 0.28694

As we can see, the overall inference probability and inference accuracy in the second-

round experiment are significantly improved compared with the inference results in the first

round. Some example system improvements and the evaluation of these improvements are

described as below:

1) Simplified selection form (New_Intention 1, Figure 5.3)

To evaluate the benefit of the simplified selection form in the new system, I did a

statistical analysis of users’ behaviors after entering the page All Papers on which the selection

form is located. There are four kinds of behaviors: a) use the simplified selection form to filter

papers; b) expand the selection form to filter papers; c) view the information of a paper; d) others

(exclude users’ aimless behaviors). The number of occurrences of each behavior is: 54, 41, 63

and 30 respectively. Since users used the simplified selection form more often than they

www.manaraa.com

84

expanded the selection form, we can draw the conclusion that it is more suitable to display the

simplified selection form on the page All Papers instead of the expanded version.

2) The link of the newly submitted comment in the message of successful

submission/editing, and a link of the newly uploaded paper in the message of successful

uploading/editing (New_Intention 2&3, Figure 5.4).

Table 5.18 shows the use of the new links when users upload/edit a paper or submit/edit a

comment, and it can be seen that the new link has been frequently used. Meanwhile, consecutive

Submit operations didn’t occur at all in the new system, which also demonstrate the effectiveness

of the modification.

Table 5.18 The Use of New Links for Viewing Paper Information

Observation Occurrences Ratio

Upload Paper View Paper Infoa / Upload Paper Anyb 28/32 87.5%

Submit Comment View Paper Info / Submit Comment Any 82/92 89.13%

Edit Paper View Paper Info / Edit Paper Any 6/9 66.67%

Edit Comment View Paper Info / Edit Comment Any 16/22 72.73%

aUse the new link to view paper info after uploading a paper
bAny behavior after uploading a paper

3) Download link on paperinfo page (New_Intention 4, Figure 5.5)

The observed users’ behaviors in the second-round experiment show that users prefer the

new link to the old one after viewing the paper information, considering that the total use count

of the new link is 146, while that of the old link is 60.

To demonstrate the overall system improvement, I focused on four major user

tasks/operations, which are uploading/editing paper, submitting/editing comment, and evaluated

users’ performance on those tasks in both rounds of experiments. The comparison result is shown

www.manaraa.com

85

in the Table 5.19. As we can see, the success rate of four tasks all increased in the second-round

experiment, while the time cost and the error occurrence rate, especially the consecutive error

occurrence rate, significantly decreased.

Table 5.19 Comparison Between Two Rounds Experiments

Task Round # Of
Occur.

Avg. Time
Spent (s)

Successful Errorsa Consecutive
Errorsb

Upload
Paper

1st 55 387.87 38 (69.09%) 28 (50.91%) 14 (25.45%)

2nd 32 173.57 31 (96.88%) 1 (3.125%) 0

Submit
comment

1st 42 287.26 38 (90.48%) 23 (54.76%) 15 (35.71%)

2nd 100 207.79 92 (92%) 49 (49%) 6 (6%)

Edit
Paper

1st 16 47.81 8 (50%) 5 (31.25%) 0

2nd 9 47.33 9 (100%) 0 0

Edit
comment

1st 29 105.38 20 (68.97%) 0 0

2nd 12 64.25 10 (83.33%) 0 0

aThe times of at least one error occurs when submitting/editing a paper/comment
bThe number of occurrences of consecutive errors

Overall speaking, through the evolution from CoRE version I to II, the system usability

has been improved, which means the evolution based on our methodology was successful.

5.9 Summary of the Experiment

Based on the above demonstration of the execution of the experiment and the analysis of

the results, we now can revisit those three hypotheses proposed at the beginning of this chapter,

and see if each of them is valid or not.

1) Desire inference with CRF model:

www.manaraa.com

86

According to inference accuracy results of the first round experiment (Table 5.10, section

5.6), CRF model is able to deliver highly accurate desire inference result when appropriate

feature templates have been designed and applied. The actual inference accuracy rate is 91%,

which easily meets our expectation (> 90%). Additionally, the average inference probability

(confidence) is about 0.85. The combination of high inference accuracy and confidence prove the

fact again that CRF model is good at sequential labelling. On the contrary, using the same

training and test data sets, HMM fell short on the accuracy aspect as theoretically expected, with

less than 74% accuracy rate.

2) New intention & system drawback detection:

According to our case study in section 5.7, 7 new intentions and 5 system drawbacks

have been identified for CoRE Version I using the three newly proposed methods (in section

4.3). Same for CoRE Version II, our methods are effective to detect new intentions in the domain

of CoRE. For example, a phenomenon I discovered through desire transition analysis (Method

II) is that the user often reviews or downloads paper one by one after filtering papers using the

selection form. Since these consecutive Download Paper desires occur frequently, I proposed to

introduce a compound desire called Download All Papers by adding a link for downloading all

selected papers at once.

The above results and example also demonstrate that our methodology is able to

continuously explore users’ new intentions and enhance the system to adapt to the ever-changing

users’ requirements.

3) Successful and rapid system evolution:

Based on our analysis results in section 5.8, the CoRE system successfully evolved from

version I to version II, and the evolution process was efficient. In each round of our experiment, I

www.manaraa.com

87

collected 60 users’ behavioral and system contextual information for one month, and got around

10,000 raw data records. And then it took about one month for just one domain expert to process

& analyze data, infer desires & detect new intentions, and eventually evolved our experiment

system. However, in practice, I believe that our methodology can be even more efficient,

especially for those systems or applications with a large user base. For example, it might take

Facebook only a few seconds to capture the same amount of raw data. On the other hand, there

might be new problems/issues emerged, for example, Big Data issue, which is beyond the

discussion of this thesis. However, as one of the technical merits of our methodology, I use real

system usage data to drive and enable system evolution, which makes the whole process pretty

straightforward. As what have been shown in section 5.7, those newly detected intentions and

system drawbacks are quite intuitive and self-explained. Thus, it won’t take much intellectual

effort to figure out the corresponding new requirements and system remedies.

In summary, our two-round, exploratory experiment was successful, in the sense that all

hypotheses have been proven valid, and our proposed methodology has been demonstrated to be

effective and efficient.

5.10 Threats to Validity

In this section, I will discuss some potential threats to the validity of our proposed

methodology and experiment from the following perspectives:

1) Threats to construct validity: concerns regarding the design of my methodology

and the measurement of my metrics;

2) Threats to internal validity: concerns regarding alternate explanations for the

experimental results;

3) Threats to external validity: concerns regarding the generalizability of my results.

www.manaraa.com

88

5.10.1 Threats to Construct Validity

One potential concern about the validity of my methodology is the theoretical foundation

(section 3.1 & 3.6), in which the computational models for situation and intention have been

defined. Although I carefully and thoroughly characterized and described the human-centric

context-aware domains with certain causal relationships among users’ desire, actions and

relevant context values by making a number of assumptions and axioms, some exceptional cases

might not be covered or might newly emerge along with the evolution of these domains. Simply

said, any threat to the validity of theoretical foundation can jeopardize our experiment.

Besides, there are also a couple of concerns regarding the measurement of our metrics:

1) Interaction of normal operations and reporting desires

To directly validate our desire inference results, I asked participants to report their real-

time desires while operating on the system, which is considered as a necessary part of our

experiment. However, such additional task (reporting desires) might interfere with participants’

normal thinking process and might further influence their understanding of the system. An

obvious example would be that the dropdown desire list on each webpage of CoRE contains all

the predefined desires related to the system, and participants may be able to learn from it, and

consequently adjust their behaviors. Although such phenomenon is undesired, the value of

acquiring participants’ self-reported desires significantly outweigh its side effect.

2) Hypothesis guessing

Due to our local IRB regulations, I need to fully introduce and explain our experiment to

all participants, including our basic experiment motivation and detailed procedure. Although I

tried to be very brief on our experiment goals and technical methods, participants might be able

to guess what hypothesis I want to validate, and even what data can help prove those hypothesis

www.manaraa.com

89

valid. Such possibility cannot be eliminated, since the majority of the participants are majored in

computer science, computer engineering, or related fields. However, I doubt the possible impact

of such phenomenon on the quality of our data, because the CoRE system appears to be a regular

online library, and looks quite intuitive and familiar to most of the participants, and they could

finish most of the tasks without thinking too much about the system and the experiment itself.

Therefore, I expect the impact of hypothesis guessing to be minimal in our experiment.

5.10.2 Threats to Internal Validity

For internal validity, I will look into whether there is sufficient evidence to support the

conclusions of our experiment, specifically in the following aspects:

1) Design of comparison model (HMM)

To demonstrate that CRF has good performance in desire inference, and I designed a

comparison model, HMM, and evaluated both methods’ desire inference results side by side in

Table 5.10 (section 5.6). However, since HMM is designed differently from CRF, it is hard to

construct the comparison absolutely fair and even. To be specific, as introduced in section 5.5,

one critical step for building a HMM is to design the initial estimation of values in the three

matrixes, while the critical step for building a CRF model is to design the feature templates.

Although the comparison result shows CRF outperformed HMM, the possibility of not having

the best HMM still cannot be eliminated. What I could do was to try with different HMMs, and

pick the best one to compare with CRF. But I didn’t know if the one I chose was the real best one

or not. Such issue commonly exists in many related statistical studies, and our way to handle it is

considered as acceptable.

2) Prediction of new requirements

www.manaraa.com

90

The new requirements revealed from the analysis of divergent behaviors were mainly

based on our subjective judgement, and were validated through usability analysis between two

versions of systems indirectly, instead of directly inquiring the users. Therefore, it is still

debatable whether our predicted new requirements were in fact the users’ new requirements, or

just our own preferred system evolution path. However, when evolving a real-world system,

engineers may face the same problem, and one way to truly validate newly found requirements is

to evaluate through usability analysis of the new system. But it must be admitted that

improvement of system usability may due to different reasons, which might not be the

implementation of the specific new requirements. For example, the time spent for uploading a

paper (Table 5.19) decreases significantly may because some previously required information

has been removed, such as DOI. So a reasonable conclusion that I can draw for the evolution of

CoRE is that its overall system usability has been improved by implementing new requirements

and necessary remedies.

3) Arbitrary design of desire granularity

To build the domain knowledge, a prerequisite is to define and enumerate all the

anticipated desires. The quality of the predefined desire set is crucial for the accuracy of desire

inference. Especially the granularity of desire must be properly designed. If the desire is too fine,

it will create too many labels for CRF to choose from, and will probably confuse the CRF model.

Or if the desire is too coarse, it may not be able to generalize the causal relations among desire,

actions, and context values. In our experiment, the desires in the domain of CoRE were relatively

easy to define. However, I haven’t tested other domains for the feasibility and the difficulty of

designing a set of appropriate known desires.

4) Statistical conclusion validity

www.manaraa.com

91

In essence, I use statistical methods (Table 5.11, 5.12, 5.13) to identify candidate

observations for new intention detection, and we basically depends on the quality and

characteristics of sample data (mislabeled records). When the sample space is bigger, our

methodology is more likely to work well. However, when the sample space is too small or has

too much noise (false positive), our methodology, or any method based on statistical analysis,

may not give an ideal result. One example is that for a matured system (domain), there might be

only few new intentions, which correspond to only few observations. While having such a small

target mixed with a few noisy data, it is hard to elicit the real observations of our interests.

5.10.3 Threats to External Validity

In our methodology, I described its application domain as a human-centric context-aware

domain. And our experiment was conducted on a system which is supposed to be a representative

application. However, as I stated in Assumptions 1, 2 and 3, the domain should be context aware,

and belong to a single agent who has a single desire at any instant. If an application domain

doesn’t have these attributes, it is not applicable for our methodology. For example, if users

interact frequently, and their actions directly influence each other’s desire, their behaviors will be

very hard to describe and desire inference is not able to perform (using our methodology).

However, I do believe that our methodology has broad application prospects because many

applications can be characterized as human-centric context-aware domains as I described in

chapter 3. Some example systems to apply our methodology are listed as the followings.

1) Dynamic web-based systems’ server side is responsible for processing and

responding to users’ requests, where monitoring programs can be deployed to capture users’

operations, inputs, submissions and contents on the pages.

www.manaraa.com

92

2) Mobile applications which can sense users’ physical status and environment

conditions, and adapt their behavior accordingly. In fact, some research work has been conducted

to effectively select services for adaptation according to the user’s current context [57].

3) Home automation [58] is another promising application area, especially for smart

home for elderly and disabled [59], in which most of users’ behaviors can be monitored and users

have eager demand to increase the quality of life without caregivers or institutional care.

www.manaraa.com

93

CHAPTER 6. DISCUSSIONS & CONCLUSIONS

This thesis presents an effective method of applying Conditional Random Fields as the

mathematical foundation to infer human desires based on observations of their actions and

relevant environmental context values, and further explore their new intentions for driving

system evolution. With an explorative experiment, I show that the accuracy of desire inference is

pretty high (> 90%) by using CRF compared with the result of using HMM (75%). Furthermore,

the three methods for detecting new intentions (section 4.3) have been validated to be effective to

obtain users’ new potential intentions and further reveal their new requirements on the system or

system drawbacks that are useful for system evolution. The experiment results verified our

hypothesis about fast discovery of new requirements and system evolution based on our

methodology.

However, there are some limitations of our work. Besides the application scope delimited

by Assumption 1, 2 and 3 (section 3.1), our methodology is only able to capture users’ new

functional requirements not non-functional requirements such as high usability, fast response

time, etc. In addition, the analysis of potential new intentions and users’ new requirements still

needs a lot of human efforts and may not consistently give the best result. Therefore, the gap

between desire inference and new intention detection presents steep research challenges for us to

tackle in the future:

1) The methodology proposed in this thesis can only automatically detect users’

potential desires related to new intentions and system drawbacks. The work of eliciting and

verifying new intentions and system drawbacks, as well as designing and implementing new

system functionalities would require human efforts. From a knowledge engineering perspective,

www.manaraa.com

94

it is worthy being further investigated as to how to acquire design wisdom from raw data

analytics.

2) In my methodology, I restrict the domain as a single agent domain, which is

unable to characterize multiple agent domains, especially in which agents frequently interact

with each other. To extend the applicability of our methodology, there are some interesting

research questions to be answered. For example, how to characterize the causal relationships

among agent’s desires, actions, and context values or can CRF encode such causal relationships

among other research questions.

3) In my experiment, I demonstrated how to apply our methodology onto a web-

based system. In later sections, I also discussed the feasibility of applying our methodology on

different services. To verify that the method is really applicable for other systems, experimental

validation is still much needed. Some valuable candidates are mobile applications, smart home

systems, etc., which are becoming prevalent nowadays with rapidly changing user requirements.

www.manaraa.com

95

REFERENCES

[1] K.H. Bennett and V.T. Rajlich, “Software Maintenance and Evolution: a Roadmap,” Proc.
Conf. The Future of Software Engineering, ACM, pp. 73-90, 2000.

[2] I. Borne, S. Demeyer, and G.H. Galal, “Object-Oriented Architectural Evolution,” Object-
Oriented Technology ECOOP’99 Workshop Reader Lecture Notes in Computer Science, vol.
1743, pp. 57-79, 1999.

[3] D. Rowe and J. Leaney, “Evaluating evolvability of computer based systems architectures -

an ontological approach,” Proc. Int’l Conf. and Workshop on Engineering of Computer-
Based Systems, pp. 360- 367, 1997.

[4] H. Ming, K. Oyama, and C. Chang, “Human-Intention Driven Self Adaptive Software

Evolvability in Distributed Service Environments,” Proc. 12th IEEE Int’l Workshop Future
Trends of Distributed Computing Systems (FTDCS ’08), pp. 51-57, 2008.

[5] A. Iliasov and A. Romanovsky, “CAMA: Structured Communication Space and Exception

Propagation Mechanism for Mobile Agents,” Proc. ECOOP Workshop Exception Handling
in Object Oriented Systems: Developing Systems That Handle Exceptions, pp. 75-87, 2005.

[6] H.P. Breivold, I. Crnkovic, R. Land, and S. Larsson, “Using dependency model to support

architecture evolution,” Proc. 4th International ERCIM Workshop on Software Evolution and
Evolvability (Evol’08) at the 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE’08), pp. 82-91, 2008.

[7] M.M. Lehman, J.F. Ramil, P. Wernick, D.E. Perry, and W.M. Turski, “Metrics and Laws of

Software Evolution—the Nineties View,” Proc. Fourth Int’l Software Metrics Symposium,
pp. 20-32, 1997.

[8] H.P. Breivold, I. Crnkovic, and M. Larsson, “Software architecture evolution through

evolvability analysis,” Journal of Systems and Software, vol. 85, Issue 11, pp. 2574–2592,
November 2012.

[9] C.L. Nehaniv and P. Wernick, “Introduction to software evolvability,” Proc. Third Int’l IEEE

Workshop on Software Evolvability, pp. 6-7, 2007.

[10] S. Robertson and J. Robertson, Mastering the Requirements Process: Getting Requirements
Right (3rd Edition), Chapter 14: Requirements and Iterative Development, Addison Wesley,
2012.

[11] M. Marschall, “Transforming a Six Month Release Cycle to Continuous Flow,” Proc.

Assoc. Geographic Information Laboratories Europe Conf. (AGILE ’07), pp. 395-400,
2007.

www.manaraa.com

96

[12] J. Gorinsek, S. Van Baelen, Y. Berbers, and K. De Vlaminck, “Managing Quality of Service
during Evolution Using Component Contracts,” Proc. ETAPS 2003 Workshop
Unanticipated Software Evolution (USE ’03), pp. 57-62, 2003.

[13] O. Saliu and G. Ruhe, “Supporting Software Release Planning Decisions for Evolving

Systems,” Proc. 29th IEEE/NASA Software Eng. Workshop (SEW-29), pp. 14-26, 2005.

[14] C. Salinesi and A. Etien, “Compliance Gaps: A Requirements Elicitation Approach in the
Context of System Evolution,” Proc. 9th International Conference on Object-Oriented
Information Systems (OOIS 2003), pp. 71-82, 2003.

[15] W. Jiang, H. Ruan, L. Zhang, P. Lew, and J. Jiang, “For User-Driven Software Evolution:

Requirements Elicitation Derived from Mining Online Reviews,” Proc. 18th Pacific-Asia
Conference on Advances in Knowledge Discovery and Data Mining (PAKDD 2014), pp.
584-595, 2014.

[16] C. Chang, K. Oyama, H. Jaygarl, and H. Ming, “On Distributed Run-Time Software

Evolution Driven by Stakeholders of Smart Home Development,” Proc. Second Int’l Symp.
Universal Comm. (ISUC ’08), pp. 59-66, 2008.

[17] R. Laddaga, “Self Adaptive Software—Problems and Projects,” Proc. Int’l Workshop

Software Evolvability (SE ’06), pp. 3-10, 2006.

[18] J. Xia, C. Chang, T. Kim, H. Yang, R. Bose, and S. Helal, “Fault-Resilient Ubiquitous
Service Composition,” Proc. Third IET Int’l Conf. Intelligent Environments (IE ’07), pp.
108-115, 2007.

[19] C. Chang, H. Jiang, H. Ming, and K. Oyama, “Situ: A Situation-Theoretic Approach to

Context-Aware Service Evolution,” IEEE Trans. on Services Computing, vol. 2, no. 3, July-
September, 2009.

[20] L. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in Speech

Recognition,” Proc. IEEE, vol. 77, no. 2, pp. 257-286, 1989.

[21] C. Sutton and A. McCallum, An Introduction to Conditional Random Fields for Relational
Learning. MIT Press, 2006.

[22] J. Lafferty, A. McCallum and F. Pereira, “Conditional random fields: Probabilistic models

for segmenting and labeling sequence data,” Proc. of 18th International Conference on
Machine Learning, Morgan Kaufmann, pp. 282-289, 2001.

[23] T. Mens and S. Demeyer, Software Evolution. Springer-Verlag Berlin Heidelberg, 2008.

[24] IEEE Std. 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology,

IEEE, New York, 1991.

www.manaraa.com

97

[25] B.P. Lientz and E.B. Swanson, Software Maintenance Management, A Study of the
Maintenance of Computer Application Software in Data Processing Organizations.
Addison-Wesley, Reading MA, 1980.

[26] P.I. Okwu and I.N. Onyeje, “Software Evolution: Past, Present and Future,” American

Journal of Engineering Research (AJER), vol. 03, Issue 05, pp. 21-28, 2014.

[27] Liguo Yu and Alok Mishra, “An Empirical Study of Lehman's Law on Software Quality
Evolution,” International Journal of Software and Informatics, vol. 7, Issue 3, pp. 469-481.
2013.

[28] S. Liaskos, S. McIlraith and S. Sohrabi, “Representing and reasoning with preference

requirements using goals,” Technical report, Dept. of Computer Science, University of
Toronto, 2006.

[29] Thomas Keller, “Contextual Requirements Elicitation - An Overview,” Seminar in

Requirements Engineering, Department of Informatics, University of Zurich, 2011.

[30] G.E. Kniesel and R.E. Filman, “Unanticipated Software Evolution,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 17, Issue 5, pp. 307–377, 2005.

[31] V.J. Hodge and J. Austin, “A Survey of Outlier Detection Methodologies,” Artificial

Intelligence Review, vol. 22, Issue 2, pp. 85-126, 2004.

[32] L. Getoor and B. Taskar, An Introduction to Conditional Random Fields for Relational
Learning (Edition 1). MIT Press, pp. 93–127, 2007.

[33] E. Chen, “Introduction to Conditional Random Fields,” Retrieved from

http://blog.echen.me/2012/01/03/introduction-to-conditional-random-fields/, Sep. 2014.

[34] T. Cohn, “Efficient inference in large conditional random fields,” Proc. the 17th European
conference on Machine Learning (ECML'06), pp. 606-613, 2006.

[35] H.M. Wallach, “Efficient training of conditional random fields,” Master’s thesis, University

of Edinburgh, 2002.

[36] A. McCallum and W. Li, “Early results for named entity recognition with conditional
random fields, feature induction and web-enhanced lexicons,” Proc. the seventh conference
on Natural language learning at HLT-NAACL (CONLL '03), vol. 4, pp 188-191, 2003.

[37] A. Culotta, R. Bekkerman, and A. McCallum, “Extracting social networks and contact

information from email and the web,” First Conference on Email and Anti-Spam (CEAS),
Mountain View, CA, 2004.

www.manaraa.com

98

[38] F. Peng, F. Feng, and A. McCallum, “Chinese segmentation and new word detection using
conditional random fields,” International Conference on Computational Linguistics
(COLING), pp. 562–568, 2004.

[39] F. Peng and A. McCallum, “Accurate information extraction from research papers using

conditional random fields,” Human Language Technology Conference and North American
Chapter of the Association for Computational Linguistics (HLT-NAACL), pp. 963-979,
2004.

[40] Y. Liu, J. Carbonell, P. Weigele, and V. Gopalakrishnan, “Protein fold recognition using

segmentation conditional random fields (SCRFs),” Journal of Computational Biology, vol.
13, no. 2, pp. 394–406, 2006.

[41] K. Sato and Y. Sakakibara, “RNA secondary structural alignment with conditional random

fields,” Bioinformatics, vol. 21, pp. 237–242, 2005.

[42] X. He, R.S. Zemel, and M. A. Carreira-Perpinian, “Multiscale conditional random fields for
image labelling,” Conference on Computer Vision and Pattern Recognition (CVPR), pp.
695-702, 2004.

[43] H. Xie, L. Liu, and J. Yang, “i*-Prefer: Optimizing Requirements Elicitation Process Based

on Actor Preferences”, Proc. 24th ACM Symposium on Applied Computing, pp. 347-354,
2009.

[44] A. Quattoni, M. Collins, and T. Darrell, “Conditional random fields for object recognition,”

Advances in Neural Information Processing Systems (NIPS), pp. 1097–1104, 2005.

[45] K.K. Gupta, B. Nath, and R. Kotagiri, “Layered Approach Using Conditional Random
Fields for Intrusion Detection,” IEEE Trans. on Dependable and Secure Computing, vol. 7,
Issue 1, pp. 35 – 49, 2010.

[46] Y. Shen, J. Yan, S. Yan, L. Ji, N. Liu, and Z. Chen, “Sparse hidden-dynamics conditional

random fields for user intent understanding,” Proc. the 20th international conference on
World wide web (WWW '11), pp. 7-16, 2011.

[47] O. Brill and E. Knauss, “Structured and Unobtrusive Observation of Anonymous Users and

their Context for Requirements Elicitation,” Proc. IEEE 19th International Requirements
Engineering Conference, pp. 175–184, 2011.

[48] A. Alkhanifer and S. Ludi, “Towards a Situation Awareness Design to Improve Visually

Impaired Orientation in Unfamiliar Buildings: Requirements Elicitation Study,” Proc. IEEE
22nd International Requirements Engineering Conference, pp. 23-32, 2014.

[49] H. Xie, C. Chang, H. Ming, and K. Lu, “The Concepts and Ontology of SiSL: A Situation-

Centric Specification Language”, Proc. Computer Software and Applications Conf.
Workshops (COMPSACW ’12), pp. 301-307, 2012.

www.manaraa.com

99

[50] L.T.F. Gamut, “Logic, Language, and Meaning,” Intensional Logic and Logical Grammar,
vol. 2, Chicago, IL: University of Chicago Press, 1991.

[51] S.B. Kotsiantis, “Supervised Machine Learning: A Review of Classification Techniques,”

Proc. of the 2007 conference on Emerging Artificial Intelligence Applications in Computer
Engineering: Real Word AI Systems with Applications in eHealth, HCI, Information
Retrieval and Pervasive Technologies, pp. 3-24, 2007.

[52] T. Kudo, “CRF++: Yet Another CRF toolkit,” Retrieved from

http://taku910.github.io/CRFpp, May 2014.

[53] X.H. Phan, L.M. Nguyen, and C.T. Nguyen, “FlexCRFs: Flexible Conditional Random
Fields,” Retrieved from http://flexCRFs.sourceforge.net, May 2014.

[54] V. Prabhakaran, A.C. Arpaci-Dusseau, and R.H. Arpaci-Dusseau, “Analysis and Evolution

of Journaling File Systems,” Proc. the USENIX Annual Technical Conference (ATEC '05),
pp. 8-23, 2005.

[55] P. Rigaux, “The MyReview System,” Retrieved from http://myreview.sourceforge.net, Jan.

2014.

[56] J.M. François, “An implementation of Hidden Markov Models in Java,” Retrieved from
https://code.google.com/p/jahmm, Dec. 2014.

[57] G.S. Thyagaraju and U.P. Kulkarni, “Design and Implementation of User Context aware

Recommendation Engine for Mobile using Bayesian Network, Fuzzy Logic and Rule Base,”
International Journal of Computer Applications, vol. 40, No.3, pp. 47–63, 2012.

[58] Abi Research, “1.5 Million Home Automation Systems Installed in the US This Year,”

Retrieved from https://www.abiresearch.com/press/15-million-home-automation-systems-
installed-in-th, Mar. 2015.

[59] P. Harmo, T. Taipalus, J. Knuuttila, J. Vallet, and A. Halme, “Needs and solutions - home

automation and service robots for the elderly and disabled,” IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2005), pp. 3201-3206, 2005.

[60] App Annie, “Decision-making platform for the entire mobile app economy,” Retrieved from

https://www.appannie.com, Mar. 2015.

[61] G. Weiss, Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence.
MIT Press, 2000.

[62] R. Kelley, A. Tavakkoli, C. King, M. Nicolescu, M. Nicolescu, and G. Bebis,

“Understanding Human Intentions via Hidden Markov Models in Autonomous Mobile
Robots,” Proc. Third ACM/IEEE Int’l Conf. Human Robot Interaction (HRI ’08), pp. 67-
374, 2008.

	2015
	Detection of new intentions from users for software service evolution in human-centric context-aware environments using Conditional Random Fields
	Haihua Xie
	Recommended Citation

	Microsoft Word - Haihua Xie_Thesis for PhD_0506_2015.docx

